Skip to main content

The Sensory Functions of the Cerebellum of the Thornback Ray, Platyrhinoidis triseriata

  • Chapter
How do Brains Work?

Summary

Single unit spikes and evoked field potentials were recorded in different parts and depths of the corpus cerebelli and auricle of immobilized rays before and after stimulating with light, electric fields, touch, tail bending and direct shock to mechanoreceptive nerves of the lateral line.

Discrete areas of the cerebellum are responsive to these modalities and the areas show limited overlap; they are all distinct from the area reported by Plassmann to be responsive to angular acceleration. The visual and tactile-proprioceptive areas are large; the electric area is small. Most units are excited only by one modality.

The tail is represented only in the posterior lobe; trigeminal innervation extends from the posterior onto the anterior lobe, suggesting some topographic projection.

The dynamic characteristics of the responses were examined particulary in the visual units. To a flash, units discharge up to six bursts of spikes in 500 ms. This pattern is reduced at repetition rates >1/s; above ca. 4/s units tend to fire irregularly. Various kinds of units are found in respect to the succession of responses to short trains of flashes. Some units fire much better to objects moving in a limited visual field with a certain direction and rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson LR (1963) The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms. In: Gilbert P (ed) Sharks and survival. Heath. Boston, pp 165 – 241

    Google Scholar 

  • Bodznick DA, Northcutt RG (1980) Segregation of electroand mechanoreceptive inputs to the elasmobranch medulla. Brain Res 195: 313 – 322

    Article  Google Scholar 

  • Boord RL, Campbell CBG (1977) Structural and functional organization of the lateral line system of sharks. Am Zool 17: 431 – 441

    Google Scholar 

  • Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the midbrain of the clearnose skate Raja eglanteria. J Comp Neurol (in press)

    Google Scholar 

  • Bullock TH, Corwin JT (1979) Acoustic evoked activity in the brain of sharks. J Comp Physiol 1229: 223 – 234

    Google Scholar 

  • Corwin JT (1978) The relation of inner ear structure to feeding behavior in sharks and rays. In: Johari O (ed) Scanning electron microscopy’ 1978. vol ll. SEM. AMF O’Hare, IL. pp 1105 – 1112

    Google Scholar 

  • Corwin JT (1981) Audition in elasmobranchs. In: Tat olga W N. Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp SI-105

    Google Scholar 

  • Ebbesson SOE, Campbell CBG (1973) On t’ne organization of cerebellar efferent pathwasy in the nurse shark ( Ging(rmo.v-tontn cirratum). J Comp Neurol 152: 233–254

    Google Scholar 

  • McCormick CA (1981) Comparative neuroanatom of the octavolateralis area of fishes. In: Tasolga WN. Popper AN. Fay RR (eds) Hearing and sound communication in fishes. Springer. Berlin Heidelberg New York. pp 375 – 382

    Chapter  Google Scholar 

  • Montgomery JC (1980) Dogfish horizontal canal system: responses of primary afferent, vestibular. and cerebellar neurons to rotational stimulation. Neuroscience 5: 1761 – 1769

    Article  Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES. Mathewson RF (eds) Sensory biology of sharks, skates, and rays. Office of Nasal Research. Arlington. VA. pp 117 – 193

    Google Scholar 

  • Paul DH. Roberts BL (1974) Responses of neurones in the cerebellar corpus of the dogfish (S.rlior/tìuto caniculal. 1 Phsiol 244:47–49 (Abstr)

    Google Scholar 

  • Paul DH. Roberts BL (1976) Responses of cerebellar nuclear neurones in the elasmobranch fish Seyliorhinus eanieuIu. J Physiol 257: 43–14 (Abstr)

    Google Scholar 

  • Platt CJ. Bullock TH, CzĂ©h G, Kovacevic N. KonjeviĂ© Gojkovic M (1974) Comparison of electroreceptor. mechanoreceptor and optic evoked potentials in the brain of some rays and sharks. J Comp Physiol 95: 323 – 355

    Article  Google Scholar 

  • Rizzolo A (1929) A study of equilibrium in the smooth dogfish (Galeux cants. Mitchill) after removal of different parts of the brain. Biol Bull 57: 245 – 249

    Article  Google Scholar 

  • Roberts BL (1981) Central processing of acousticolateralis signals in elasmobranchs. In: Tavolga WN, Popper AN,

    Google Scholar 

  • Fay RR (eds) Hearing and sound communication in fishes. Springer. Berlin Heidelberg New York, pp 357–373

    Google Scholar 

  • Ten Cate J (1935) Physiologie des Zentralnervensystems der Fische. Erg Biol 11: 335 – 409

    Article  Google Scholar 

  • Tong SL, Bullock TH (1982) Electroreceptive representation and its dynamics in the cerebellum of the catfish, lentlurus nebulosus ( Ictaluridae, Siluriformes). J Comp Physiol 145: 289–298

    Article  Google Scholar 

  • Tong SL, Lee L, Bullock TH (1982) Distribution of responses to visual, mechanical and electrical stimulation in the cerebellum of catfish and ray. Neuroscience 7 (Suppl). s212 (Abstr)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tong, Sl., Bullock, T.H. (1982). The Sensory Functions of the Cerebellum of the Thornback Ray, Platyrhinoidis triseriata . In: How do Brains Work?. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-9427-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9427-3_26

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-9429-7

  • Online ISBN: 978-1-4684-9427-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics