Neuronal Mechanisms for Object Discrimination in the Weakly Electric Fish Eigenmannia Virescens

  • Albert S. Feng
  • Theodore H. Bullock


The peripheral sensory basis for object discrimination was investigated in the weakly electric fish Eigenmannia virescens. Single unit recordings were made from the primary afferent fibres in the posterior branch of the anterior lateral line nerve while the local electric field (self-generated and simulated) was modified by external resistance and capacitance shunts. Both fibre types (probability and phase coders) responded differentially to capacitance and resistance shunts of equivalent impedance. The degree of response differentiation between the two shunting conditions varied with the intensity of the electrical stimulus at the receptor. These data suggest that the primary electroreceptors can discriminatively encode the two electrical characteristics of ‘objects’. However, since the response of primary electroreceptors also varied with the spatial orientation of the shunting electrodes, central structures must play an important role in object discrimination.


Firing Frequency Electric Organ Discharge Resistance Shunt Electric Fish Object Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bastian, J. (1974). Electrosensory input to the corpus cerebelli of the high frequency electric fish Eigenmannia virescens. y. comp. Physiol. 90, 1–24.CrossRefGoogle Scholar
  2. Bastian, J. (1975). Receptive fields of cerebellar cells receiving exteroceptive input in a Gymnotid fish. y. Neurophysiol. 38, 285–300.Google Scholar
  3. Behrend, K. (In preparation). Processing information carried in a high frequency wave: a study on the properties of cerebellar units in the high frequency electric fish Apteronotus albifrons.Google Scholar
  4. Belbenoit, P. (1969). Conditionnement instrumental de l’electroperception chez Gnathonemus petersii. Z. vergl. Physiol. 67, 192–204.CrossRefGoogle Scholar
  5. Belbenoit, P. (1970). Determination de la distance maximale d’electroperception des objects chez les Mormyrides. y. Physiol. Paris, 62, suppl. 3, 344.Google Scholar
  6. Bell, C. C., Myers, J. P. Russell, C. J. (1974). Electric organ discharge patterns during dominance related behavioral displays in Gnathonemus petersii (Mormyridae). y. comp. Physiol. 92, 201–28.CrossRefGoogle Scholar
  7. Bennett, M. V. L. (1971). Electroreceptors. In Fish Physiology, vol. v (ed. Hoar and Randall), pp. 347–491. New York: Academic Press.Google Scholar
  8. Black-Cleworth, P. (1970). The role of electric discharge in the nonreproductive social behaviour of Gymnotus, •arapo. Anim Behay. Monog. 3, 1–77.Google Scholar
  9. Bradbury, J. W. (1970). Targe discrimination by the echolating bat Vampyrum spectrum.,. exp. Zool. 173, 23–46.CrossRefGoogle Scholar
  10. Bruns, V. (1971). Electrisches Organ von Gnathonemus (Mormyridae). Z. Zellforsch. 122, 538–63.CrossRefGoogle Scholar
  11. Bullock, T. H. (1968a). Biological sensors. In Vistas in Science, pp. 176–206. Abuquerque: University of New Mexico Press.Google Scholar
  12. Bullock, T. H. (1968 b). The representation of information in neurons and sites for molecular participation. Proc. Nat. Acad. Sci. 60(4) 1058–68.Google Scholar
  13. Bullock, T. H., Behrend, K. Heiligenberg, W. (1975). Comparison of the jamming avoidance responses in Gymnotid and Gymnarchid electric fish: A case of convergent evolution of behavior and its sensory basis. y. comp. Physiol. 103, 97–121.CrossRefGoogle Scholar
  14. Bullock, T. H. Chichibu, S. (1965). Further analysis of sensory coding in electroreceptors of electric fish. Proc. Nat. Acad. Sci., 54, 422–9.CrossRefGoogle Scholar
  15. Bullock, T. H., Hamstra, R. H. Jr. Scheich, H. (1972 a). The jamming avoidance response of high frequency electric fish. I. General features. J. comp. Physiol. 77, 1–22.Google Scholar
  16. Bullock, T. H., Hamstra, R. H. Jr. Scheich, H. (1972b). The jamming avoidance response of high frequency electric fish. II. Quantitative aspects. y. comp. Physiol. 77, 23–48.CrossRefGoogle Scholar
  17. Cole, K. S. (1942). Impedance of single cells. Tab. Biol. 19, 24.Google Scholar
  18. Enger, P. S. Szabo, T. (1965). Activity of central neurons involved in electroreception in some weakly electric fish (Gymnotidae). y. Neurophysiol. 28, 800–18.Google Scholar
  19. Griffin, D. R., Friend, J. H. Webster, F. A. (1965). Target discrimination by the echolocation of bats. y. exp. Zool. 158, 155–68.CrossRefGoogle Scholar
  20. Hagiwara, S., Kusano, K. Negishi, K. (1962). Physiological properties of electroreceptors of some gymnotids. y. Neurophysiol. 25, 430–49.Google Scholar
  21. Hagiwara, S. Moetta, H. (1963). Coding mechanisms of electroreceptor fibers in some electric fish. J. Neurophysiol. 26, 551–67.Google Scholar
  22. Hagiwara, S., Szabo, T. Enger, P. S. (1965). Physiological properties of electroreceptors in the electric eel, Electrophorus electricus. y. Neurophysiol. 28, 775–83.Google Scholar
  23. Harder, W. (1972). Nachweis aktiver elektrischer Ortung bei Mormyriden. Z. Tierpsychol. 30, 94–102.CrossRefGoogle Scholar
  24. Heiligenberg, W. (1973). Electrolocation of objects in the electric fish Eigenmannia (Rhamphichtyidae, Gymnotoidae). y. comp. Physiol. 87, 137–64.CrossRefGoogle Scholar
  25. Heiligenberg, W. (1974). Electrolocation and jamming avoidance in a Hypopygus (Rhamphichtyidae, Gymnotoidae), and electric fish with pulse type discharges. y. comp. Physiol. 91, 223–40.CrossRefGoogle Scholar
  26. Heiligenberg, W. (1975). Theoretical and experimental approaches to spatial aspects of electrolocation. y. comp. Physiol. 103, 247–72.CrossRefGoogle Scholar
  27. Hopkins, C. D. ( 1972 a). Patterns of electrical communication among gymnotid fish. Ph.D. dissertation. Rockefeller University, New York.Google Scholar
  28. Hopkins, C. D. (1972b). Sex differences in electric signalling in an electric fish. Science, 176, 1035–7.CrossRefGoogle Scholar
  29. Hopkins, C. D. (r974). Electric communication: functions in the social behaviour of Eigenmannia virescens. Behay. 50, 270–305.Google Scholar
  30. Hopkins, C. D. (1976). Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotid fish.,. comp. Physiol. 111, 171–207.CrossRefGoogle Scholar
  31. Huckstedt, G. (1973). Water chemistry. Neptune. New Jersey: TFH Publication.Google Scholar
  32. Knunsen, E. (1974). Beha%ioral thresholds to electric signals in high frequency electric fish. y. comp. Physiol. 91, 333–53.CrossRefGoogle Scholar
  33. Kramer, B. (1974). Electric organ discharge interaction during interspecific agonistic behaviour in freely swimming mormyrid fish...7. comp. Physiol. 93, 203–35.CrossRefGoogle Scholar
  34. Lissmann, H. W. Machin, K. E. (5958). The mechanism of object location in Gymnarchus niloticus and similar fish. y. exp. Biol. 35, 451–86.Google Scholar
  35. Meyer, D. L., Bullock, T. H. Heiligenberg, W. (1976). The ventral substrate response: A new postural control mechanism in fishes..7. comp. Physiol. 109, 59–68.Google Scholar
  36. Russell, C. J., Myers, J. P. Bell, C. C. (1974). The echo response in Gnathonemus petersii (Mormyridae)..7. comp. Physiol. 92, 181–200.CrossRefGoogle Scholar
  37. Scheich, H. Bullock, T. H. (1974). The detection of electric fields from electric organs. In Handbook of Sensory Physiology, vol. 111/3 (ed. A. Fessard ). Berlin: Springer-Verlag.Google Scholar
  38. Scheich, H., Bullock, T. H. Hamstra, R. H. Jr. (1973). Coding properties of two classes of afferent nerve fibers: high frequency electroreceptors in the electric fish, Eigenmannia. J. Neurophysiol. 36, 39–60.Google Scholar
  39. Schlegel, P. (1973). Perception of objects in weakly electric fish Gymnotus carapo as studied in recordings from rhombencephalic neurons. Exp. Brain. Res. 18, 340–54.CrossRefGoogle Scholar
  40. Schlegel, P. (1974). Activities of rhombencephalic units in Mormyrid fish. Exp. Brain Res. 19, 300–13.CrossRefGoogle Scholar
  41. Schlegel, P. (1975). Elektroortung bei schwach elektrischen Fischen: Verzerrungen des elektrischen Feldes von Gymnotus carapo and Gnathonemus petersii durch Gegenstande and ihre Wirkungen auf afferente Aktivitaten. Biol. Cybernetics 20, 197–212.CrossRefGoogle Scholar
  42. Simmons, J. A., Lavender, W. A., Lavender, B. A., Doroshow, C. A., Kiefer, S. W., Livingston, R., Scallet, A. C. Crowley, D. E. (1974). Target structure and echo spectral discrimination by echolocating bats. Science, N.Y. 186, 1130–2.CrossRefGoogle Scholar
  43. Suthers, R. A. (1965). Acoustic orientation by fish-catching bats. y. exp. Zool. 158, 319–48.CrossRefGoogle Scholar
  44. Valone, J. A. Jr. (197o). Electrical emissions in Gymnotus carapo and their relation to social behavior. Behay. 37, 1–14.Google Scholar
  45. Webster, F. A. (1967). Interception performance of electrolocating bats in the presence of interference. In Animal Sonar Systems, tome 5 (ed. Rene-Guy Busnel ), pp. 673–713. France: Lab. de Physiol. Acoub., Jouy-en-Josas.Google Scholar
  46. Westby, G. W. M. (1975). Comparative studies of the aggressive behaviour of two Gymnotid fish (Gymnotus carapo and Hypopomus artedi). Anim. Behay. 23, 192–213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Albert S. Feng
    • 1
  • Theodore H. Bullock
    • 1
  1. 1.Department of Neurosciences, School of Medicine and Neurobiology Unit, Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations