Discrimination Among Temporal Patterns of Stimulation in a Computer Model of a Coelenterate Nerve Net

  • Lester G. Fehmi
  • T. H. Bullock


A simulation study is reported of the spread of excitation in a digital computer model based quite realistically on a coelenterate nerve net. The question posed is whether an elementary nervous system with randomly distributed properties can discriminate between time patterns of stimuli at the same average frequency. Forty-four temporal patterns of stimulation, each composed of seven stimuli in the same total period of time were applied to each of nine simulated nerve nets with each of eleven different distributions of four rates of decay of facilitation. The results may be summarized as follows:


Decay Rate Temporal Pattern Response Category Average Frequency Stimulus Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batswt, E. J., C. F. A. Pantin, and E. A. Robson: The nerve net of the sea anemone Metridium senile; the mesenteries and the column. Quart. J. micr. Sci. 101, 487 – 510 (1960).Google Scholar
  2. Bullock, T. H.: The functional organization of the nervous system of Enteropneusta. Biol. Bull. 79, 91 – 113 (1940a);CrossRefGoogle Scholar
  3. The existence of unpolarized synapses. Anat. Rec. 78, Suppl. 67 (1940b) (Abstract);Google Scholar
  4. Anatomical organization of the nervous system of Enteropneusta. Quart. J. micr. Sci. 86, 55 – 112 (1945);Google Scholar
  5. Comparative aspects of superficial conduction systems in echinoids and asteroids. Amer. Zool. 5, 545 – 562 (1965);Google Scholar
  6. Physiological bases of behavior. In " Ideas in modern biology" (J. A. Moose, ed.). Garden City, N.Y.: Natural History Press 1965.Google Scholar
  7. Bul- Lock, T. H., and G. A. Horridge: Structure and function in the nervous systems of invertebrates. San Francisco: W. H. Freeman Co. 1965.Google Scholar
  8. Hoasrdge, G. A.: The co-ordination of the protective retraction of coral polyps. Phil. Trans. B 240, 495 – 529 (1957).CrossRefGoogle Scholar
  9. Josephson, R. K.: Colonial responses of hydroid polyps. J. exp. Biol. 38, 559 – 578 (1961a);Google Scholar
  10. Repetitive potentials following brief electric stimuli in a hydroid. J. exp. Biol. 38, 579 – 594 (1961b);Google Scholar
  11. Spontaneous electrical activity in a hydroid polyp. Comp. Biochem. Physiol. 5, 45 – 58 (1961c).Google Scholar
  12. Josephson, R. K., R. F. R.rss. and R. M. Worthy: A simulation study of a diffuse conducting system based on coelenterate nerve nets. J. theor. Biol. 1, 460 – 487 (1961).Google Scholar
  13. Parker, G. H.: The elementary nervous system. Philadelphia: J. B. Lip-pincott Co. 1919.CrossRefGoogle Scholar
  14. Passaxo, L. M.: Primitive nervous systems. Proc. nat. Acad. Sci. Wash.)) 50, 306 – 313 (1963).CrossRefGoogle Scholar
  15. Segundo, J. P., G. P. Moore, L. J. Stensaas, and T. H. Bullock: Sensitivity of neurones in Aplysia to temporal pattern of arriving impulses. J. exp. Biol. 40. 643 – 667 (1963).Google Scholar
  16. Segunno, J. P., D. H. Perkel, and G. P. Moore: Spike probability in neurones: influence of temporal structure in the train of synaptic events. Kybernetik 3 (2), 67 – 82 (1966).CrossRefGoogle Scholar
  17. Wiersma, C. A. C., and R. T. Adams: The influence of nerve impulse sequence on the contractions of different crustacean muscles. Physiol. comp. ('s-Gray.) 2, 20 – 33 (1950).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Lester G. Fehmi
    • 1
    • 2
  • T. H. Bullock
    • 2
  1. 1.Department of Psychology and Zoology and Brain Research InstituteUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of NeurosciencesUniversity of CaliforniaSan Diego La JollaUSA

Personalised recommendations