Advertisement

Equivalence Sets: How Many Kinds of Nerve Cells Are There?

  • Theodore Holmes Bullock

Summary

This chapter attempts to quantify how far specification of neurons goes. It attempts to consider all criteria by which neurons differ significantly from each other and to consider species of molluscs, arthropods, fish and small and large mammals.

Keywords

Receptive Field Coupling Function Partial Redundancy Mere Enumeration Identifiable Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerbach AA, Bennett MVL (1969): Chemically mediated transmission at a giant fiber synapse in the central nervous system of a vertebrate. J Gen Physiol 53: 183–210CrossRefGoogle Scholar
  2. Bargmann CI (1993): Genetic and cellular analysis of behavior in C. elegans. Annu Rev Neurosci 16: 47–72CrossRefGoogle Scholar
  3. Cohen MJ (1970): A comparison of invertebrate and vertebrate central neurons. In: The Neurosciences: A Second Study Program, Schmitt FO, ed. New York: Rockefeller University Press, pp 798–812Google Scholar
  4. Changeux J-P (1985): Neuronal Man: The Biology of Mind. New York: Pantheon BooksGoogle Scholar
  5. Fentress JC (1976): Simpler Networks and Behavior. Sunderland MA: Sinauer AssociatesGoogle Scholar
  6. Goodman CS (1978): Isogenic grasshoppers: genetic variability in the morphology of identified neurons. J Comp Neural 182: 681–706CrossRefGoogle Scholar
  7. Horridge GA, Meinertzhagen IA (1970): The accuracy of the patterns of connexions of the first and second order neurons of the visual system of Calliphora. Proc R Soc Land B Biol Sci 175: 69–82CrossRefGoogle Scholar
  8. Hoyle G (1957): Comparative Physiology of the Nervous Control of Muscular Contraction. Cambridge, England: University PressGoogle Scholar
  9. Hoyle G (1977): Identified Neurons and Behavior in Arthropods. New York: Plenum PressCrossRefGoogle Scholar
  10. Levinthal F, Macagno E, Levinthal C (1976): Anatomy and development of identified cells in isogenic organisms. Cold Spring Harbor Symp Quant Biol 40: 321–337CrossRefGoogle Scholar
  11. Macagno ER, Levinthal C, Sobel I (1979): Three-dimensional computer reconstruction of neurons and neuronal assemblies. Annu Rev Biophys Bioeng 8: 323–351CrossRefGoogle Scholar
  12. Model PG, Highstein SM, Bennett MVL (1975): Depletion of vesicles and fatigue of transmission at a vertebrate central synapse. Brain Res 98: 209–228CrossRefGoogle Scholar
  13. Palm G (1990): Cell assemblies as a guideline for brain research. Concepts Neurosci 1: 133–147Google Scholar
  14. Selverston AI (1980): Information processing and synaptic morphology. In: Information Processing in the Nervous System, Pinsker HM, Willis WD Jr, eds. New York: Raven Press, pp 91–108Google Scholar
  15. Shaw GL, Harth E, Scheibel AB (1982): Cooperativity in brain function: assemblies of approximately 30 neurons. Exp Neurol 77: 324–358CrossRefGoogle Scholar
  16. Usherwood PNR, Newth DR (1975): “Simple” Nervous Systems. London: Edward ArnoldGoogle Scholar
  17. Wiersma CAG (1939): The innervation of the walking legs of the crab Eriocheir sinensis. Arch Neerl Sci (3C) 24: 24 2249Google Scholar
  18. Wiersma CAG (1941): The efferent innervation of muscle. Biol Symp 3: 259–291Google Scholar
  19. Wiersma CAG (1958): On the functional connections of single units in the central nervous system of the crayfish, Procambarus clarkii Girard. ]Comp Neurol 110: 421–471CrossRefGoogle Scholar
  20. Wiersma CAG, Van Harreveld A (1938): A comparative study of the double motor innervation in marine crustaceans. J Exp Biol 15: 18–31Google Scholar
  21. Wiersma CAG, Ripley SH, Christensen E (1955): The central representation of sensory stimulation in the crayfish. J Cell Comp Physiol 46:307–326CrossRefGoogle Scholar
  22. Auger C, Fessard A (1929): Observations complementaires sur un phénomène de contractions rythmées provoquées par excitation galvanique chez certains insects. CR Soc Biol 101: 897Google Scholar
  23. Cajal SR (1933): Neuronismo o Reticularismo? Las Pruebas Objetivasde la UnidadAnatomica de la CelulasNerviosas. MadridGoogle Scholar
  24. Eccles JC (1935): Slow potential waves in the superior cervical ganglion. J Physiol 85: 464–501Google Scholar
  25. Eccles JC, Katz B, Kuffler SW (1941): Nature of the “endplate potential” in curarized muscle. JNeurophysiol4:362–387 Google Scholar
  26. Gesell R (1940): Forces driving the respiratory act. A fundamental concept of the integration of motor activity. Science 91: 229–233CrossRefGoogle Scholar
  27. Gesell R, Brassfield CR, Lillie RH (1954): Implementation of electrical energy by paired half-centers as revealed by structure and function. J Comp Neurol 101: 331–406CrossRefGoogle Scholar
  28. Hodgkin AL (1938): The subthreshold potentials in a crustacean nerve fibre. Proc R Soc Lond B Biol Sci 126: 247–285CrossRefGoogle Scholar
  29. Lissmann HW (1958): On the function and evolution of electric organs in fish. J Exp Biol 35: 156–191Google Scholar
  30. Mackie GO (1967): The recognition, distribution and ultrastructure of hydrozoan nerve elements. JMorph 123: 43–62Google Scholar
  31. Mackie GO (1990): The elementary nervous system revisited.Google Scholar
  32. Am Zoo/ 30:907–920Google Scholar
  33. Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960): Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43: 129–175CrossRefGoogle Scholar
  34. Maynard DM Jr (1955): Activity in a crustacean ganglion. II Pattern and interaction in burst formation. Biol Bull 109: 420–436CrossRefGoogle Scholar
  35. Maynard DM Jr (1961): Cardiac inhibition in decapod crustacea. In: Nervous Inhibitions, Florey E, ed. Oxford: Pergamon Press, pp 144–178Google Scholar
  36. McCulloch WS, Pitts W (1943): A logical calculus for ideas immanent in nervous activity. Bull Math Biophys 5: 115–133CrossRefGoogle Scholar
  37. Young JZ (1936): The structure of nerve fibers and synapses in some invertebrates. Cold Spring Harbor Symp Quant Biol 4: 1–6CrossRefGoogle Scholar
  38. Young JZ (1939): Fused neurons and synaptic contacts in the giant nerve fibres of cephalopods. Phil Trans R Soc Lond B 229: 465–503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Theodore Holmes Bullock
    • 1
  1. 1.Department of Neurosciences 0201University of California, San DiegoLa JollaUSA

Personalised recommendations