Carbonate Microfabrics Related to Subaerial Exposure and Paleosol Formation

  • Roger J. Bain
  • Annabelle M. Foos
Part of the Frontiers in Sedimentary Geology book series (SEDIMENTARY)


Subaerial diagenesis produces microfabrics within carbonates that can be used for recognition of ancient subaerially exposed deposits. Porous, permeable, dune and beach sands display pronounced development of subaerial microfabric features. Pleistocene grainstones from San Salvador, Bahamas, contain rhizoliths, pedotubules, alveolar textures, calcified root hairs, Microcodium, laminated micrite, clotted micrite, soil pisoids, circumgranular cracking, horizontal fractures, microbial borings, and iron-rich clay accumulations, produced by subaerial exposure.

The preservation of subaerial diagenetic microfabrics in ancient carbonates is illustrated with examples from the Bryantsville Breccia of the Mississippian Ste. Genevieve Formation in south-central Indiana. Microfabrics observed in the Bryantsville Breccia include rhizoliths, alveolar textures, possible Microcodium, clotted micrite, caliche pisoids, brecciated micrite and horizontally fractured micrite.


Subaerial Exposure Surface Crust Horizontal Fracture Bioclastic Grainstones Blocky Calcite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bain, R.J., 1991. Distribution of Pleistocene lithofacies in the interior of San Salvador Island, Bahamas and possible genetic models. In: Bain, R.J. (ed.), Proceedings of the Fifth Symposium on the Geology of the Bahamas. Bahamian Field Station, Ft. Lauderdale, FL (in press).Google Scholar
  2. Braithwaite, C.J.R., 1983. Calcrete and other soils in Quaternary limestones: Structures, processes and application Journal Geological Society of London, v. 40, p. 351–363.Google Scholar
  3. Dodd, J.R., 1987. Valmeyran (Middle Mississippian) Carbonate Rocks of Southern Indiana. Great Lakes Section, S.E.P.M. Guidebook, Geology Dept., Indiana Univ., Bloomington, 127 p.Google Scholar
  4. Esteban, M., and C.F. Klappa, 1983. Subaerial exposure environment. In: Scholle, P.A., D.G. Bebout, and C.H. Moore (eds.), Carbonate Depositional Environments. American Association of Petroleum Geologists Memoir, v. 33, p. 1–54.Google Scholar
  5. Ettensohn, F.R., G.R. Dever, Jr., and J.S. Grow, 1988. A paleosol interpretation for profiles exhibiting subaerial exposure “crusts” from the Mississippian of the Appalachian Basin. In: Reinhardt, J. and W.R. Sigleo (eds.), Paleosols and Weathering through Geologic Time: Principles and Applications. Geological Society of America Special Paper, v. 216, p. 49–79.Google Scholar
  6. Foos, A.M., 1991. Aluminous lateritic soils, Eleuthera, Bahamas: A modern analog to carbonate paleosols. Journal of Sedimentary Petrology, v. 61, p. 340–348.Google Scholar
  7. Foos, A.M. and D.R. Muhs, 1991. Uranium-series age of an oolitic-peloidal eolianite, San Salvador Island, Bahamas: New evidence for a high stand of sea at 200–225 ka. Geological Society of America Abstracts with Programs, v. 23, 31 p.Google Scholar
  8. Goldhammer, R.K. and R.D. Elmore, 1984. Paleosols capping regressive carbonate cycles in the Pennsylvanian Black Prince limestone, Arizona. Journal of Sedimentary Petrology, v. 54, p. 1124–1137.Google Scholar
  9. Gutshick, R.A. and C.A. Sandberg, 1983. Mississippian continental margins of the conterminous United States. In: Stanley, D.J. and J.T. Moore (eds.), The Shelfbreak: Critical interface on continental margins. S.E.P.M. Special Publication, v. 33, p. 79–96.Google Scholar
  10. Harrison, R.S. and R.P. Steinen, 1978. Subaerial crust, caliche profiles, and breccia horizons: Comparison of some Holocene and Mississippian exposure surfaces, Barbados and Kentucky. Geological Society of America Bulletin, v. 89, p. 385–396.CrossRefGoogle Scholar
  11. Jones, B. and K.C. Ng, 1988. The structure and diagenesis of rhizoliths from Cayman Brac, British West Indies. Journal of Sedimentary Petrology, v. 58, p. 457–467.Google Scholar
  12. Klappa, C.F., 1978. Biolithogenesis of Microcodium; elucidation. Sedimentology, v. 25, p. 489–522.CrossRefGoogle Scholar
  13. Klappa, C.F., 1980. Brecciation textures and tepee structures in Quaternary calcrete (caliche) profiles from eastern Spain; the plant factor in their formation. Geological Journal, v. 15, p. 81–89.CrossRefGoogle Scholar
  14. Leibold, A.W., 1982. Stratigraphy, petrography, and depositional environment of the Bryantsville Breccia (Meramecian) of south-central Indiana. Unpublished Masters Thesis, Indiana University, Bloomington, 171 p.Google Scholar
  15. Little, B.G., D.K. Buckley, R. Cant, P.W.T. Henry, A. Jefferiss, J.D. Mather, J. Stark, and R.N. Young, 1977. Land resources of the Bahamas: A summary. Land Resources Division, Ministry of Overseas Development, Surrey England, 133 p.Google Scholar
  16. Muhs, D.R., C.A. Bush, K.C. Stewart, T.R. Rowland, and R.C. Crittenden, 1990. Geochemical evidence of Saharan dust parent material for soils developed on Quaternary limestones of Caribbean and western Atlantic islands. Quaternary Research, v. 33, p. 157–177.CrossRefGoogle Scholar
  17. Multer, H.G. and J.E. Hoffmeister, 1968. Subaerial laminated crusts of the Florida Keys. Geological Society of America Bulletin, v. 79, p. 183–192.CrossRefGoogle Scholar
  18. Prather, B.E., 1985. An upper Pennsylvanian desert paleosol in the D-zone of the Lansing-Kansas City Groups, Hitchcock County, NE. Journal of Sedimentary Petrology, v. 55, p. 213–221.Google Scholar
  19. Shaver, R.H., C.H. Ault, A.M. Burger, D.D. Carr, J.B. Droste, D.L. Eggert, H.H. Gray, D. Harper, N.R. Hassenmueller, W.A. Hassenmueller, A.S. Horowitz, H.C. Hutchinson, B.D. Keith, S.J. Keller, J.B. Patton, C.B. Rexroad, and C.E. Wilson, 1986. Compendium of Paleozoic rock-unit stratigraphy in Indiana-A revision. Indiana Geological Survey Bulletin, v. 59, 203 p.Google Scholar
  20. Steinen, R.P., 1974. Phreatic and vadose diagenetic modification of Pleistocene limestone; petrographic observations from subsurface of Barbados, West Indies. American Association of Petroleum Geologists Bulletin, v. 58, p. 1008–1024.Google Scholar
  21. Van Kauwenbergh, S.J. and R.J. Bain, 1985. Diagenesis of the carbonate rocks of San Salvador Island, Bahamas. In: Teeter, J.W. (ed.), Proceedings of the Second Symposium on the Geology of the Bahamas. Bahamian Field Station, Ft. Lauderdale, FL, p. 279–296.Google Scholar
  22. Walls, R.A., W.B. Harris, and W.E. Nunan, 1975. Calcareous crust (caliche) profiles and early subaerial exposure of Carboniferous carbonates, northeastern Kentucky. Sedimentology, v. 22, p. 417–440.CrossRefGoogle Scholar
  23. Wright, V.P., 1982. Calerete paleosols from the Lower Carboniferous Llanelly Formation, South Wales. Sedimentary Geology, v. 33, p. 1–33.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Roger J. Bain
  • Annabelle M. Foos

There are no affiliations available

Personalised recommendations