Skip to main content

Preferred Orientation and Velocity Anisotropy in Marine Clay-Bearing Calcareous Sediments

  • Chapter
Carbonate Microfabrics

Part of the book series: Frontiers in Sedimentary Geology ((SEDIMENTARY))

Summary

In order to better understand the role of preferred orientation of calcite in the compressional velocity (V p ) anisotropy of calcareous marine sediments, ultrasonic V p and x-ray pole figure goniometry measurements were made on selected laminated calcareous claystones, laminated clay-bearing limestones, and nonlaminated limestones from various DSDP sites. Although all samples exhibit V p anisotropy (up to 20%), none exhibit calcite-preferred orientation. Thus, V p anisotropy in these calcareous sediments is not caused by calcite-preferred orientation, in agreement with findings of other researchers. Pole figures and thin section observations of the laminated carbonate samples indicate that poles to (001) of kaolinite and illite are strongly aligned normal to bedding. Clay-preferred orientation is probably responsible for some of the observed V p anisotropy. The V p anisotropy in calcareous claystones is found to be correlated to calcite content, in contrast to the relation found by others for pelagic chalks and limestones, suggesting a dependence upon lithology. Most of the anisotropy in laminated calcareous claystones appears to be controlled by flat pores oriented parallel to bedding, which could slow acoustic waves traveling perpendicular to bedding. Pelagic chalks and limestones tend to have irregularly shaped pores that do not affect anisotropy in the same way as in calcareous claystones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachman, R.T., 1979. Acoustic anisotropy in marine sediments and sedimentary rocks. Journal of Geophysical Research, v. 84, p. 7661–7663.

    Google Scholar 

  • Backus, G.E., 1962. Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, v. 67, p. 4427–4440.

    Article  Google Scholar 

  • Bamford, D. and S. Crampin, 1977. Seismic anisotropy—the state of the art. Geophysical Journal of the Royal Astronomical Society, v. 49, p. 1–8.

    Article  Google Scholar 

  • Banthia, B.S., M.S. King, and I. Fatt, 1965. Ultrasonic shear-wave velocities in rocks subjected to simulated overburden pressure and internal pore pressure. Geophysics, v. 30, p. 117–121.

    Article  Google Scholar 

  • Carlson, R.L. and N.I. Christensen, 1979. Velocity anisotropy in semi-indurated calcareous deep sea sediments. Journal of Geophysical Research, v. 84, p. 205–211.

    Article  Google Scholar 

  • Carlson, R.L., C.H. Schaftenaar, and R.P. Moore, 1983. Causes of compressional-wave anisotropy in calcareous sediments from the Rio Grande Rise. In: Barker, P.F., R.L. Carlson, D.A. Johnson, et al., Initial Reports of the Deep Sea Drilling Project, 72. U.S. Government Printing Office, Washington, DC, p. 565–576.

    Google Scholar 

  • Carlson, R.L., A.F. Ganhi, and K.R. Snow, 1986. Empirical reflection travel time versus depth and velocity versus depth functions for the deep-sea sediment column. Journal of Geophysical Research, v. 91, p. 8249–8266.

    Article  Google Scholar 

  • Christensen, N.I., D.M. Fountain, and R.J. Stewart, 1973. Oceanic crustal basement: A comparison of seismic properties of DSDP basalts and consolidated sediments. Marine Geology, v. 15, p. 215–226.

    Article  Google Scholar 

  • Davis, E.E. and R.M. Clowes, 1986. High velocities and seismic anisotropy in Pleistocene turbidites off Western Canada. Geophysical Journal of the Royal Astronomical Society, v. 84, p. 381–399.

    Article  Google Scholar 

  • Fryer, G.J., 1986. Transverse isotropy and the thickness of layer 2A (abstract). EOS Transactions, American Geophysical Union, v. 67, p. 1083.

    Google Scholar 

  • Fryer, G.J., D.J. Miller, and P.A. Berge, 1989. Seismic anisotropy and age-dependent structure of the upper oceanic crust. In: Sinton, J.M. (ed.), Evolution of Mid-Oceanic Ridges. Geophysical Monograph 57, American Geophysical Union, Washington, DC, p. 1–8.

    Chapter  Google Scholar 

  • Gardner, G.H.F., M.R.J. Wyllie, and D.M. Droschak, 1965. Hysteresis in the velocity-pressure characteristics of rocks. Geophysics, v. 30, p. 111–116.

    Article  Google Scholar 

  • Kern, H., 1974. Gefugeregelung und elastiche anisotropie eines marmors. Contributions to Mineralogy.and Petrology, v. 43, p. 47–54.

    Article  Google Scholar 

  • Kim, D.-C., K.W. Katahara, M.H. Manghnani, and S.O. Schlanger, 1983. Velocity and attenuation anisotropy in deep-sea carbonate sediments. Journal of Geophysical Research, v. 88, p. 2337–2343.

    Article  Google Scholar 

  • Kim, D.-C., M.H. Manghnani, and S.O. Schlanger, 1985. The role of diagenesis in the development of physical properties of deep-sea carbonate sediments. Marine Geology, v. 69, p. 69–91.

    Article  Google Scholar 

  • Mann, U. and G. Muller, 1979. X-ray mineralogy of Deep Sea Drilling Project Legs 51 through 53, Western North Atlantic. In: Donnelly, T., J. Francheteau, W. Bryan, P. Robinson, M. Flowers, M. Salisbury, et al., Initial Reports of the Deep Sea Drilling Project, 51–53 pt. 2. U.S. Government Printing Office, Washington, DC, p. 721–729.

    Google Scholar 

  • Milholland, P., M.H. Manghnani, S.O. Schlanger, and G.H. Sutton, 1980. Geoacoustic modeling of deep-sea carbonate sediments. Journal of the Acoustical Society of America, v. 68, p. 1351–1360.

    Article  Google Scholar 

  • O’Brien, D.K., 1985. Strain estimation and sense of shear determination in phyllonites and ultramylonites based on phyllosilicate preferred orientation. Unpublished M.S. thesis, University of California, Berkeley, 118 p.

    Google Scholar 

  • O’Brien, D.K. and M.H. Manghnani, 1992. Physical properties of ODP Site 762: a comparison of shipboard and shore-based results. In: Haq, B.U., U. von Rad, S. O’Connell, et al., Proceedings of the Ocean Drilling Program, Scientific Results, 122. Ocean Drilling Program, College Station, Texas, p. 349–362.

    Google Scholar 

  • O’Brien, D.K., M.H. Manghnani, and J.S. Tribble, 1989. Irregular trends of physical properties in homogeneous clay-rich sediments of DSDP Leg 87 Hole 584, midslope terrace in the Japan trench. Marine Geology, v. 87, p. 183–194.

    Article  Google Scholar 

  • O’Brien, D.K., H.-R. Wenk, L. Ratschbacher, and Z. You, 1987. Preferred orientation of phyllosilicates in phyllonites and ultramylonites. Journal of Structural Geology, v. 9, p. 719–730.

    Article  Google Scholar 

  • Peselnick, L. and R.A. Robie, 1963. Elastic constants of calcite. Journal of Applied Physics, v. 34, p. 2494–2495.

    Article  Google Scholar 

  • Postma, G.W., 1955. Wave propagation in a stratified medium. Geophysics, v. 20, p. 780–806.

    Article  Google Scholar 

  • Schaftenaar, C.H. and R.L. Carlson, 1984. Calcite fabric and acoustic anisotropy in deep-sea carbonates. Journal of Geophysical Research, v. 89, p. 503–510.

    Article  Google Scholar 

  • Schultz, L.G., 1964. Quantitative interpretation of mineralogical composition from x-ray and chemical data for the Pierre Shale. United States Geological Survey Professional Paper 391-C, p. 1–31.

    Google Scholar 

  • Shipboard Scientific Party, 1987. Site 603. In: van Hinte, J.E., S.W. Wise, Jr., et al., Initial Reports of the Deep Sea Drilling Project, 93. U.S. Government Printing Office, Washington, DC, p. 25–276.

    Google Scholar 

  • Shipboard Scientific Party, 1990. Site 762. In: Haq, B.U., U. von Rad, S. O’Connell, et al., Proceedings of the Ocean Drilling Program, Initial Reports, 122. Ocean Drilling Program, College Station, Texas, p. 213–288.

    Google Scholar 

  • Todd, T. and G. Simmons, 1972. Effect of pore pressure on the velocity of compressional waves in low-porosity rocks. Journal of Geophysical Research, v. 77, p. 3731–3743.

    Article  Google Scholar 

  • Turner, F.J., D.T. Griggs, R.H. Clark, and R. Dixon, 1956. Deformation of Yule marble, Part VII. Development of oriented fabrics at 300° to 500°C. Geological Society of America Bulletin, v. 67, p. 1259–1294.

    Article  Google Scholar 

  • Wenk, H.-R., 1985. Measurement of pole figures. In: Wenk, H.-R. (ed.), Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. Academic Press, Orlando, FL, p. 11–47.

    Google Scholar 

  • Wenk, H.-R., C.S. Venkitasuramanyan, and D.W. Baker, 1973. Preferred orientation in experimentally deformed limestone. Contributions to Mineralogy and Petrology, v. 38, p. 81–114.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

O’Brien, D.K., Manghnani, M.H., Tribble, J.S., Wenk, HR. (1993). Preferred Orientation and Velocity Anisotropy in Marine Clay-Bearing Calcareous Sediments. In: Rezak, R., Lavoie, D.L. (eds) Carbonate Microfabrics. Frontiers in Sedimentary Geology. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-9421-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9421-1_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9423-5

  • Online ISBN: 978-1-4684-9421-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics