Advertisement

Prohormone Processing Enzymes and Protein Production

  • Debyra Groskreutz
  • Dave Marriott
  • Cornelia Gorman
Conference paper
Part of the Serono Symposia, USA book series (SERONOSYMP)

Abstract

There are two general classes of proteins synthesized by the cell: the group of cytosolic proteins (including proteins of the nucleus and mitochondria) and the secretory proteins. The secretory proteins generally undergo extensive posttranslational modification (glycosylation, fatty acylation, proteolysis, and so on) as they travel though the endoplasmic reticulum (ER) and Golgi apparatus (summarized in Fig. 6.1) (reviewed in 1). Proteins targeted to the secretory apparatus with final destinations outside of the cell are also subdivided into two groups: proteins that enter the default, or constitutive pathway, and those specifically sorted to the regulated pathway of secretion (2). Unlike the ubiquitous constitutive pathway, regulated secretion is restricted to certain cell types (endocrine and exocrine) and to specific kinds of proteins (e.g., certain prohormones and degradative enzymes, such as trypsin, and the like). Furthermore, an important feature that distinguishes the regulated from the constitutive pathway is the requirement for a specific extracellular signal before stored proteins within the coated secretory granules may be released into the external milieu of the cell. Proteins that are constitutively released do not have these restrictions.

Keywords

Endoproteolytic Cleavage Constitutive Pathway Dibasic Cleavage Site Paired Basic Amino Acid Proprotein Processing Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mains RE, Dickerson IM, May V, et al. Cellular and molecular aspects of peptide hormone biosynthesis. Front Neuroendocrinol 1990; 11: 52–89.Google Scholar
  2. 2.
    Chung K-N, Walter P, Aponte G, Moore H-P H. Molecular sorting in the secretory pathway. Science 1989; 243: 192–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Steiner DF. Proteolytic processing of secretory proteins. In: Scmitt FO, Bird SJ, Bloom FE, eds. Molecular genetic neuroscience. New York: Raven Press, 1982: 149–60.Google Scholar
  4. 4.
    Selby MJ, Edwards RH, Rutter WJ. Cobra nerve growth factor: structure and evolutionary comparison. J Neurosci Res 1987; 18: 293–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Wise RJ, Pittman DD, Handin RI, Kaufman RJ, Orkin SH. The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand factor multimers. Cell 1988; 52: 229–36.PubMedCrossRefGoogle Scholar
  6. 6.
    Gray AM, Mason AJ. Requirement for activin A and transforming growth factor ß1 pro-regions in homodimer assembly. Science 1990; 247: 1328–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Pan LC, Price PA. The propeptide of rat bone 7 carboxyglutamic acid protein shares homology with other vitamin K-dependent protein precursors. Proc Natl Acad Sci USA 1985; 82: 6109–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988; 53: 505–18.PubMedCrossRefGoogle Scholar
  9. 9.
    Douglass J, Civelli O, Herbert E. Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu Rev Biochem 1984; 53: 665–715.PubMedCrossRefGoogle Scholar
  10. 10.
    Pratt RE, Flynn JA, Hobart PM, Paul M, Dzau VJ. Different secretory pathways of renin from mouse cells transfected with the human renin gene. J Biol Chem 1988; 263: 3137–41.PubMedGoogle Scholar
  11. 11.
    Dickerson IM, Dixon JE, Mains RE. Biosynthesis and post-translational processing of site-directed endoproteolytic cleavage mutants of proNPY in mouse pituitary cell. J Biol Chem 1990; 265: 2462–9.PubMedGoogle Scholar
  12. 12.
    Dickerson IM, Mains RE. Cell-type specific post-translational processing of peptides by different pituitary cell lines. Endocrinology 1990; 127: 133–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 1986; 5: 2503–12.PubMedGoogle Scholar
  14. 14.
    Watanabe T, Nakagawa T, Ikemizu J, Nagahama M, Murakami K, Nakayama K. Sequence requirements for precursor cleavage within the constitutive pathway. J Biol Chem 1992; 267: 8270–4.PubMedGoogle Scholar
  15. 15.
    Thomas G, Herbert E, Hruby DE. Expression and cell-type specific processing of human proenkephalin with a vaccinia recombinant. Science 1986; 243: 1641–3.CrossRefGoogle Scholar
  16. 16.
    Noel G, Keutmann HT, Mains RE. Investigation of the structural requirements for peptide precursor processing in AtT20 cells using site-directed mutagenesis of pro-ACTH/endorphin. Mol Endocrinol 1991; 5: 404–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Marino LR, Takeuchi T, Dickinson CJ, Yamada T. Expression and post-translational processing of gastrin in heterologous endocrine cells. J Biol Chem 1991; 266: 6133–6.PubMedGoogle Scholar
  18. 18.
    Thorne BA, Thomas G. An in vivo characterization of the cleavage site specificity of the insulin cell prohormone processing enzymes. J Biol Chem 1990; 265: 84: 36–43.Google Scholar
  19. 19.
    Hertmanni P, Picque E, Thomas D, Larreta-Garde V. Modulation of protease specificity by a change in the enzyme microenvironment. FEBS Lett 1991; 279: 123–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Davidson HW, Rhodes CJ, Hutton JC. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic ß cell via two distinct site-specific endoproteases. Nature 1988; 333: 1125–9.CrossRefGoogle Scholar
  21. 21.
    Docherty K, Steiner DF. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol 1982; 44: 625–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Lazure C, Seidah NC, Pelaprat D, Chretien M. Proteases and post-translational processing of prohormones: a review. Can J Cell Biol 1983; 61: 501–15.CrossRefGoogle Scholar
  23. 23.
    Julius D, Brake AJ, Blair L, Kunisawa R, Thorner J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-a-factor. Cell 1984; 37: 1075–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Brennan SO, Carrell RW. A circulating variant of human proalbumin. Nature 1978; 274: 908–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Abdo Y, Rousseaux J, Dautrevaux M. Proalbumin Lille, a new variant of human serum albumin. FEBS Lett 1981; 131: 286–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Scott J, Selby M, Urdea M, Quiroga M, Bell GI, Rutter WJ. Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature 1986; 302: 538–40.CrossRefGoogle Scholar
  27. 27.
    Bathurst IC, Brennan SO, Carrell RW, Cousens LS, Brake AJ, Barr PJ. Yeast KEX2 protease has the properties of a human proalbumin converting enzyme. Science 1987; 235: 348–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas G, Thorne BA, Thomas L, Allen RG, Hruby DE, Fuller R, Thorner J. Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science 1988; 241: 226–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Germain D, Zollingert L, Racine C, et al. The yeast KEX-2 processing endoprotease is active in the Golgi apparatus of transfected NIH 3T3 fibroblasts. Mol Endocrinol 1990; 4: 1572–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Fuller RS, Brake AJ, Thorner J. Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science 1989; 246: 482–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci USA 1989; 86: 1434–8.PubMedCrossRefGoogle Scholar
  32. 32.
    van den Ouweland AMV, van Duijnhoven HLP, Keizer GD, Dorssers LCJ, Van de Ven WJM. Structural homology between the human fur gene product and the subtilisin-like protease encoded by yeast KEX2. Nucleic Acids Res 1990; 18: 664.PubMedCrossRefGoogle Scholar
  33. 33.
    Hatsuzawa K, Hosaka M, Nakagawa T, et al. Structure and expression of mouse furin, a yeast kex2-related protease. J Biol Chem 1990; 265: 22075–8.PubMedGoogle Scholar
  34. 34.
    Barr PJ, Mason OB, Landsberg KE, Wong PA, Kiefer MC, Brake AJ. cDNA and gene structure for a human subtilisin-like protease with cleavage specificity for paired basic amino acid residues. DNA Cell Biol 1991; 10: 319–28.PubMedCrossRefGoogle Scholar
  35. 35.
    Barr PJ. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 1991; 66: 1–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Wise RJ, Barr PJ, Wong PA, Kiefer MC, Brake AJ, Kaufman RJ. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci USA 1990; 87: 9378–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Seidah NG, Gaspar L, Mion P, Marcinkiewicz M, Mbikay M, Chrétien M. cDNA sequence of two distinct pituitary proteins homologous to kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol 1990; 9: 415–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Smeekens SP, Steiner DF. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J Biol Chem 1990; 265: 2997–3000.PubMedGoogle Scholar
  39. 39.
    Seidah NG, Marcinkiewicz M, Benjannet S, et al. Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, furin, and kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol Endocrinol 1991; 5: 111–22.PubMedCrossRefGoogle Scholar
  40. 40.
    Benjannet S, Rondeau N, Day R, Chrétien M, Seidah NG. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci USA 1991; 88: 3564–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas L, Leduc R, Thorne B, Smeekens SP, Steiner DF, Thomas G. Kex2like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: evidence for a common core of neuroendocrine processing enzymes. Proc Natl Acad Sci USA 1991; 88: 5297–301.PubMedCrossRefGoogle Scholar
  42. 42.
    Smeekens SP, Avruch AS, LaMendola J, Chan SJ, Steiner DF. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT-20 cells and islets of Langerhans. Proc Natl Acad Sci USA 1991; 88: 340–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Bennett HPJ. Biosynthetic fate of the amino-terminal fragment of proopiomelanocortin within the intermediate lobe of the mouse pituitary. Peptides 1987; 7: 615–22.CrossRefGoogle Scholar
  44. 44.
    Benore-Parsons M, Seidah NG, Wennogle LP. Substrate phosphorylation can inhibit proteolysis by trypsin-like enzymes. Arch Biochem Biophys 1989; 272: 274–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Keifer MC, Tucker JE, Joh R, Landsberg KE, Saltman D, Barr PJ. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol 1991; 10: 757–69.CrossRefGoogle Scholar
  46. 46.
    Nakayama K, Kim WS, Tori S, et al. Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. J Biol Chem 1992; 267: 5897–900.PubMedGoogle Scholar
  47. 47.
    Bresnahan PA, Leduc R, Thomas L, et al. Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-b-NGF in vivo. J Cell Biol 1990; 111: 2851–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Schmelzer CH, Burton LE, Chan WP, et al. Biochemical characterization of recombinant human nerve growth factor. J Neurochem (in press).Google Scholar
  49. 49.
    Derynick R, Jarrett JA, Chen WY, et al. Human transforming growth factor beta 1. Nature 1985; 316: 701–5.CrossRefGoogle Scholar
  50. 50.
    Huylebroeck D, van Nimmen K, Waheed A, et al. Expression and processing of the activin-A/erthyroid differentiation factor precursor: a member of the transforming growth factor B superfamily. Mol Endocrinol 1990; 4: 115–365CrossRefGoogle Scholar
  51. 51.
    Yoshimasa Y, Paul JI, Whittaker J, Steiner DF. Effects of amino acid replacements within the tetrabasic cleavage site on the processing of the human insulin receptor precursor expressed in Chinese hamster ovary cells. J Biol Chem 1990; 265: 17230–7.PubMedGoogle Scholar
  52. 52.
    Giordano S, Di Renzo MF, Narsimhan RP, Cooper CS, Rosa C, Comoglio PM. Oncogene 1989; 4: 1383–8.PubMedGoogle Scholar
  53. 53.
    Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the heptocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802–4.PubMedCrossRefGoogle Scholar
  54. 54.
    McCune JM, Rabin LB, Feinberg MB, et al. Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 1988; 53: 55–67.PubMedCrossRefGoogle Scholar
  55. 55.
    Day R, Schafer M K-H, Watson SJ, Chrétien M, Seidah N. Distribution and regulation of the prohormone convertases PC1 and PC2 in rat pituitary. Mol Endocrinol 1992; 6: 485–97.PubMedCrossRefGoogle Scholar
  56. 56.
    Bradshaw RA, Niall ND. Insulin-related growth factors. Trends Biochem Sci 1978; 3: 274–8.CrossRefGoogle Scholar
  57. 57.
    Blundell TL, Humbel RE. Hormone families: pancreatic hormones and homologous growth factors. Nature 1980; 287: 781–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Hudson P, John M, Crawford R, et al. Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones. EMBO J 1984; 3: 2333–9.PubMedGoogle Scholar
  59. 59.
    Sherwood OD. Relaxin. In: Knobil E, Neill J, eds. The physiology of reproduction. New York: Raven Press, 1988: 585–673.Google Scholar
  60. 60.
    Bedarker S, Turnell WG, Blundell T, Schwabe C. Relaxin has conformational homology with insulin. Nature 1977; 270: 449–51.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Debyra Groskreutz
  • Dave Marriott
  • Cornelia Gorman

There are no affiliations available

Personalised recommendations