User’s Guide

  • James K. Ho
  • Rangaraja P. Sundarraj
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 338)


DECOMP is a FORTRAN IV code of the Dantzig-Wolfe algorithm for solving linear programming problems of the form
$${\text{Minimize}}\;{\text{z = }}\;\sum {\text{(}}{{\text{c}}_{\text{r}}}{{\text{x}}_{\text{r}}}{\text{)}}$$
subject to
$$\sum {\text{(A}}{{\text{1}}_{\text{r}}}{{\text{x}}_{\text{r}}}{\text{)}}\;{\text{ = }}\;{{\text{b}}_{\text{0}}}$$
$${\text{A}}{{\text{2}}_{\text{r}}}{{\text{x}}_{\text{r}}}\;{\text{ = }}\;{{\text{b}}_{\text{r}}}\;{\text{;}}\;{\text{r}}\;{\text{ = }}\;{\text{1,}}...{\text{,}}\;{\text{R}}$$
$${{\text{x}}_{\text{r}}}\; \geqslant \;{\text{0}}\;{\text{;}}\;{\text{r = 1,}}...{\text{,}}\;{\text{R}}$$
where c r is 1 by nr, b r is mr by 1 and all other vectors and matrices are of compatible dimensions. DECOMP was first coded by C. Winkler based on J.A. Tomlin’s LPM1 linear programming code at the Systems Optimization Laboratory (SOL) at Stanford University. It has been further developed by J.K. Ho and E. Loute at the Center for Operations Research and Econometrics (CORE), University of Louvain, Belgium.


Auxiliary Variable Master Problem Restricted Master Problem Major Cycle Simplex Iteration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • James K. Ho
    • 1
  • Rangaraja P. Sundarraj
    • 2
  1. 1.College of Business Administration, Management Science ProgramThe University of TennesseeKnoxvilleUSA
  2. 2.Graduate School of ManagementClark UniversityWorcesterUSA

Personalised recommendations