Unique Continuation Problems for Partial Differential Equations

  • Daniel Tataru
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 137)


The aim of this article is to give an overview of the main problems and results in unique continuation. Broadly speaking, an unique continuation result is any statement of the following type:

Given a linear partial differential operator P and two regions A C B, a solution u to Pu = 0 is uniquely determined in the larger set B by its values (behavior) in the smaller set A.


Poisson Bracket Oriented Surface Principal Symbol Infinite Order Unique Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Alinhac and M.S. Baouendi. A nonuniqueness result for operators of principal type. Math. Z., 220(4): 561–568, 1995.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    N. Aronszajn. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. (9), 36: 235–249, 1957.Google Scholar
  3. [3]
    T. Carleman. Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles ä deux variables indépendantes. Ark. Mat., Astr. Fys., 26(17): 9, 1939.MathSciNetGoogle Scholar
  4. [4]
    Lars Hörmander. On the uniqueness of the Cauchy problem under partial analyticity assumptions, unpublished.Google Scholar
  5. [5]
    Lars Hörmander. The analysis of linear partial differential operators. IV.Springer-Ver lag, Berlin, 1985. Fourier integral operators. Google Scholar
  6. [6]
    Victor Isakov. Carleman type estimates in an anisotropic case and applications. J. Differential Equations, 105 (2): 217–238, 1993.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Herbert Koch and Daniel Tataru. Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Comm. Pure Appl. Math., 54(3): 339–360, 2001.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Fang-Hua Lin. A uniqueness theorem for parabolic equations. Comm. Pure Appl. Math., 43(1): 127–136, 1990.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Sigeru Mizohata. Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques. Mem. Coll. Sei. Univ. Kyoto. Ser. A. Math., 31: 219–239, 1958.MathSciNetMATHGoogle Scholar
  10. [10]
    Chi-Cheung Poon. Unique continuation for parabolic equations. Comm. Partial Differential Equations, 21(3–4): 521–539, 1996.MATHGoogle Scholar
  11. [11]
    Luc Robbiano. Theoreme d’unicité adapté au controle des solutions des problèmes hyperboliques. Comm. Partial Differential Equations, 16(4–5): 789–800, 1991.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Luc Robbiano and Claude Zuily. Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients. Invent. Math., 131(3): 493–539, 1998.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Taira Shirota. A theorem with respect to the unique continuation for a parabolic differential equation. Osaka Math. J., 12: 377–386, 1960.MathSciNetMATHGoogle Scholar
  14. [14]
    D. Tataru. Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. (9), 75(4): 367–408, 1996.MathSciNetMATHGoogle Scholar
  15. [15]
    Daniel Tataru. Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem. Comm. Partial Differential Equations, 20(5–6): 855–884, 1995.MathSciNetMATHGoogle Scholar
  16. [16]
    Daniel Tataru. Carleman estimates, unique continuation and controllability for anizotropic PDEs. In Optimization methods in partial differential equations (South Hadley, MA, 1996), pp. 267–279. Amer. Math. Soc., Providence, RI, 1997.CrossRefGoogle Scholar
  17. [17]
    Daniel Tataru. Unique continuation for operators with partially analytic coeffi cients. J. Math. Pures Appl. (9), 78(5): 505–521, 1999.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Daniel Tataru
    • 1
  1. 1.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations