Energy Measurements and Equivalence of Boundary Data for Inverse Problems on Non-Compact Manifolds

  • A. Katchalov
  • Y. Kurylev
  • M. Lassas
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 137)


The goal of this paper is to consider inverse problems with different types of boundary data given as boundary forms. In particular, the boundary measurements considered in this paper are related to the measurements of energy needed to force the boundary value of a physical field to a given one.


Inverse Problem Riemannian Manifold Gauge Transformation Gaussian Beam Boundary Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1]
    Belishev, M. An approach to multidimensional inverse problems for the wave equation. (Russian) Dokl Akad. Nauk SSSR 297 (1987), no. 3, 524–527; translated in Soviet Math. Dokl 36 (1988), no. 3, 481–484.MathSciNetGoogle Scholar
  2. [B2]
    Belishev, M. Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Problems 13 (1997), 5, R1-R45.MathSciNetMATHCrossRefGoogle Scholar
  3. [BKa]
    Belishev, M. I., Kachalov, A. P. Boundary control and quasiphotons in a problem of the reconstruction of a Riemannian manifold from dynamic data. (Russian) Zap. Nauchn. Sem. POMI 203 (1992), 21–50; transl. J. Math. Sci. 79 (1996), 1172–1190.MATHGoogle Scholar
  4. [Bku1]
    Belishev, M., Kurylev, Y. Inverse spectral problem for the plane waves scattering in a half-space with local inhomogeneities. (Russian) Zurn. Vichisl. Matem. i Matem. Phys. 29 (1989), 1045–1056.MathSciNetMATHGoogle Scholar
  5. [C1]
    Calderón, A.P. On an inverse boundary value problem. Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980.Google Scholar
  6. [Cv]
    Chavel I. Riemannian Geometry a Modern Introduction. Camb. Tracts in Math. 108. Camb. Univ. Press, Cambridge, 1993, pp. 386.MathSciNetGoogle Scholar
  7. [CIN]
    Cheney, M., Isaacson, D. and Newell, J. C. Electrical impedance tomography. SIAM Rev. 41 (1999), 85–101.MathSciNetMATHCrossRefGoogle Scholar
  8. [Ch]
    Chernoff P. Essential self-adjoint ness of powers of generators of hyperbolic equations. J. Funct. Anal, 12 (1973), 401–414.MathSciNetMATHCrossRefGoogle Scholar
  9. [dTK]
    DeTurck D., Kazdan J. Some regularity theorems in Riemannian geometry. Ann. Sci. cole Norm. Sup. (4) 14 (1981), 249–260.MathSciNetMATHGoogle Scholar
  10. [Gr1]
    Gromov M. Curvature, diameter and Betti numbers. Comment. Math. Helv., 56 (1986), 179–195.MathSciNetCrossRefGoogle Scholar
  11. [HH]
    Hebey E., Herzlich M. Harmonic coordinates, harmonic radius and convergence of Riemannian manifolds. Rend, di Matem., ser. VII, 17, Roma (1997), 569–605.MathSciNetGoogle Scholar
  12. [Ho]
    Hormander L. Remarks on Holmgren’s uniqueness theorem.Ann. Inst. Fourier 43 (1993), 1223–1251.MathSciNetCrossRefGoogle Scholar
  13. [Is]
    Isakov, V. Inverse Problems for Partial Differential Equations. Applied Math ematical Sciences, 127. Springer-Verlag, New York, 1998, pp. 284.MathSciNetGoogle Scholar
  14. [KK]
    Katchalov, A., Kurylev, Y. Multidimensional inverse problem with incomplete boundary spectral data. Comm. Part. Diff. Equations 23 (1998), no. 1– 2, 55–95.MathSciNetMATHGoogle Scholar
  15. [KKL]
    Katchalov, A., Kurylev, Y., Lassas, M. Inverse boundary spectral problems, Chapman&Hall/CRC, 2001, pp. 290.Google Scholar
  16. [KKLM]
    Katchalov, A., Kurylev, Y., Lassas, M., Mandache N. Equivalence of time- domain inverse problems and boundary spectral problems. Submitted to Inv. Prob I. Google Scholar
  17. [KaL]
    Katchalov A., Lassas M. Gaussian beams and inverse boundary spectral problems, in: New Geom. and Anal. Meth. in Inv. Probl. (Eds. Y. Kurylev and E. Somersalo), Springer Lect. Notes, to appear.Google Scholar
  18. [KaKuLa]
    Katsuda A., Kurylev Y., Lassas M. Stability on inverse boundary spectral problem, in: New Geom. and Anal. Meth. in Inv. Probl. (Eds. Y. Kurylev and E. Somersalo), Springer Lect. Notes, to appear.Google Scholar
  19. [KaKuLT]
    Katsuda A, Kurylev Y, Lassas M. and Taylor M. Geometric convergence for manifolds with boundary. In preparation.Google Scholar
  20. [Ko]
    Koosis P. Introduction to Hp Spaces, Cambr. Univ. Press, 1998, pp. 287.Google Scholar
  21. [K1]
    Kurylev, Y. Multi-dimensional inverse boundary problems by BC-method: groups of transformations and uniqueness results. Math. Comput. Modelling 18 (1993), no. 1, 33–45.MathSciNetMATHCrossRefGoogle Scholar
  22. [K2]
    Kurylev, Y. Multidimensional Gel’fand inverse problem and boundary dis tance map. Inv. Probl. related Geom., Mito (1997), 1–15.Google Scholar
  23. [KL1]
    Kurylev, Y., Lassas, M. Hyperbolic inverse problem with data on a part of the boundary. Differential Equations and Mathematical Physics (Birmingham, AL, 1999), 259–272, AMS/IP Stud. Adv. Math., 16, Amer. Math. Soc., Providence, 2000.Google Scholar
  24. [KL2]
    Kurylev, Y., Lassas, M. Hyperbolic inverse problem and unique continuation of Cauchy data of solutions along the boundary, Proc. Roy. Soc. Edinburgh, Ser. A, to appear.Google Scholar
  25. [LaU]
    Lassas M., Uhlmann G. On determining a Riemannian manifold from the Dirichlet-to-Neumann map.Ann. Sci. Ecole Norm. Sup. (5) 34 (2001), 771–787.MathSciNetMATHGoogle Scholar
  26. [LU]
    Lee, J., Uhlmann, G. Determining anisotropic real-analytic conductivities by boundary measurements.Comm. Pure Appl. Math. 42 (1989), no. 8, 1097–1112.MathSciNetMATHCrossRefGoogle Scholar
  27. [NSU]
    Nachman, A., Sylvester, J. Uhlmann, G. An n-dimensional Borg-Levinson theorem. Comm. Math. Phys. 115 (1988), no. 4, 595–605.MathSciNetMATHCrossRefGoogle Scholar
  28. [RS]
    Reed M., Simon B. Methods of Modern Mathematical Physics, v. l, Acad. Press, New York-London, 1972.Google Scholar
  29. [SM]
    Schotland, John C., Markel, Vadim A. Inverse problem in optical diffusion tomography. 1. Fourier-Laplace inversion formulas. J. Opt. Soc. Amer. A 18 (2001), no. 6, 1336–1347.MathSciNetCrossRefGoogle Scholar
  30. [Shi]
    Shubin M. Spectral theory of elliptic operators on non-compact manifolds. Asterisque 207 (1992), 37–108.Google Scholar
  31. [Sy]
    Sylvester, J. An anisotropic inverse boundary value problem. Comm. Pure Appl. Math., 43 (1990), 201–232.MathSciNetMATHCrossRefGoogle Scholar
  32. [SU]
    Sylvester, J., Uhlmann, G. A global uniqueness theorem for an inverse bound ary value problem. Ann. of Math. (2) 125 (1987), no. 1, 153–169.MathSciNetMATHCrossRefGoogle Scholar
  33. [Tal]
    Tataru, D. Unique continuation for solutions to PDEs; between Hörmander’s theorem and Holmgren’s theorem. Comm. Part. Diff. Equations 20 (1995), no. 5– 6, 855–884.MathSciNetMATHGoogle Scholar
  34. [Ta2]
    Tataru D. Unique continuation for operators with partially analytic coefficients. J. Math. Pures Appl. 78 (1999), 505–521.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • A. Katchalov
    • 1
  • Y. Kurylev
    • 2
  • M. Lassas
    • 3
  1. 1.RANSteklov Mathematical InstituteSt. PetersburgRussia
  2. 2.Department of Mathematical SciencesLoughborough UniversityLoughboroughUK
  3. 3.Rolf Nevanlinna InstituteUniversity of HelsinkiFinland

Personalised recommendations