The Case for Differential Geometry in the Control of Single and Coupled PDEs: The Structural Acoustic Chamber

  • R. Gulliver
  • W. Littman
  • I. Lasiecka
  • R. Triggiani
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 137)


In line with the title of the IMA Summer Program—Geometric Methods in Inverse Problems and PDE Control—the aim of the present article may be summarized as follows: we intend to provide a relatively updated survey (subject to space limitations) of results on exact boundary controllability and uniform boundary stabilization of certain general classes of single Partial Differential Equations as well as of classes of systems of coupled PDEs (in dimension strictly greater than one), that have become available in recent years through novel approaches based on differential (Riemannian) geometric methods.


Riemannian Manifold Energy Method Schrodinger Equation Unique Continuation Exact Controllability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B-L-R.1]
    C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control optim. 30 (1992), 1024–1065.MathSciNetMATHCrossRefGoogle Scholar
  2. [B-L-R-H-Z.1]
    C. Bardos, G. Lebeau, J. Rauch, L. Halperin, and E. Zuazua, Stabilisation de I’equation des ondes au moyen d’un feedback port ant sur la condition aux limites de Dirichlet, Asymptotic Analysis 4 (1991), 285–291.MathSciNetMATHGoogle Scholar
  3. [B-B.1]
    M. Bernadou and J.M. Boisserie, The Finite Element Method in Thin Shell Theory, Progress in Scientific Computing 1, Birkhäuser, Boston, 1982.Google Scholar
  4. [B-O.1]
    M. Bernadou and J.T. Oden, An existence theorem for a class of non linear shallow shell problems, J. Math. Pures et Appl 60 (1981), 258–298.MathSciNetGoogle Scholar
  5. [B-G-L.1]
    S. Betelu, R. Gulliver, and W. Littman, Curvature flow methods in boundary control of partial differential equations, Appl. Math. & Optimiz. 46 (Sept./Dec. 2002), 167–178. Special issue dedicated to J.L. Lions.MathSciNetMATHCrossRefGoogle Scholar
  6. [B-C]
    R. Bishop and R. Crittenden, Geometry of Manifolds, Academic Press, New York 1964.MATHGoogle Scholar
  7. [B-Z]
    Yu. D. Burago and V.A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin 1988.MATHGoogle Scholar
  8. [B.1]
    N. Burq, Controlabilite exacte des ondes dans des ouverts peu reguliers, Asymptotic Analysis 14 (1997), 157–191.MathSciNetMATHGoogle Scholar
  9. [Ch.1]
    I. Chavel, Riemannian Geometry, a Modern Introduction, Cambridge University Press, Cambridge 1993.MATHGoogle Scholar
  10. [C-G]
    J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature. Annals of Math. 96 (1972), 413–443.MathSciNetMATHCrossRefGoogle Scholar
  11. [C-Z.1]
    K.-S. Chouand X.-P. Zhu, The Curve Shortening Problem, Chapman and Hall, 2001.Google Scholar
  12. [C-G.1]
    J. Choe and R. Gulliver, Isoperimetric inequalities on minimal submanifolds of space forms, Manuscripta Math. 77 (1992), 169–189.MathSciNetMATHCrossRefGoogle Scholar
  13. [C-H.1]
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Wiley Interscience, New York, 1962.MATHGoogle Scholar
  14. [DoC.1]
    M.P. DoCarmo, Riemannian Geometry, Birkhauser, Boston 1992.Google Scholar
  15. [Du.1]
    G.F.D. Duff, Partial Differential Equations, University of Toronto Press, 1956.MATHGoogle Scholar
  16. [E.1]
    M. Eller, Uniqueness of· continuous theorems, in Direct and Inverse Problems of Mathematical Physics, Kluwer Academic, Dordrecht/ Norwell, MA, 1999. Norwell, MA, 1999.Google Scholar
  17. [E.2]
    M. Eller, Carleman estimates with a second large parameter, JMAA 249 (2000), 491–514.MathSciNetMATHGoogle Scholar
  18. [E-I-N-T]
    M. Eller, V. Isakov, G. Nakamura, and D. Tataru, Uniqueness and stability in the Cauchy problem for Maxwell’s nd the elastic system, in Nonlinear Partial Differential Equations, Vol. 16, Chapman and Hall, London/New York, 2000.Google Scholar
  19. [E-L-T.1]
    M. Eller, I. Lasiecka, and R. Triggiani, Simultaneous exact/approximate boundary controllability of thermo-elastic plates with ariable transmission coefficients, Marcel Dekker, LectureNotes Pure Appl. Math., J. Cagnol, M. Polis, and J.P. Zolesio (2001), 109–230.Google Scholar
  20. [E-L-T.2]
    M. Eller, I. Lasiecka, and R. Triggiani, Simultaneous exact/ approximate boundary controllability of thermoelastic plates with variable thermal coefficient and moment controls, J. Math. Anal. Appl. 251 (2000), 452–478.MathSciNetMATHCrossRefGoogle Scholar
  21. [E-L-T.3]
    M. Eller, I. Lasiecka, and R. Triggiani, Unique continuation for over-determined Kirchoff plate equations and related thermoelastic systems, J. Inv. Ill-Posed Prob. 9(2) (2001), 103–148.MathSciNetMATHGoogle Scholar
  22. [E-L-T.4]
    M. Eller, I. Lasiecka, and R. Triggiani, Simultaneous exact/ approximate controllability of thermoelastic plates with variable thermal coefficient and clamped controls, Discrete Contino Dynam. Systems 7(2) (2001), 283–301.MathSciNetMATHCrossRefGoogle Scholar
  23. [F-I.1]
    A.V. Fursikov and H. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes, Vol. 34, pp. 151–742, Research Institute of Mathematics, Seoul National University, Seoul, Korea.Google Scholar
  24. [Ga.1]
    M. Galbraith, Geometric optics and convex functions in the boundary control of the wave equation, Proceedings of 3rd ISA A C Conference, 2001, World Scientific, to appear.Google Scholar
  25. [Gr.1]
    M.A. Grayson, Shortening embedded curves, Annals of Math. 129 (1989), 71–111.MathSciNetMATHGoogle Scholar
  26. [G-W.1]
    R.E. Greene and H. Wu, C convex functions and manifolds of positive curvature, Acta Math. 137 (1976), 209–245.MathSciNetCrossRefGoogle Scholar
  27. [Gri.1]
    P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monograph & Studies in Mathematics, Pitman, 1995.Google Scholar
  28. [G.1]
    R. Gulliver, On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc. 210 (1975), 185–201.MathSciNetMATHCrossRefGoogle Scholar
  29. [G-L.1]
    R. Gulliver and W. Littman, Chord uniqueness and controllability: The view from the boundary, Contemporary Mathematics, AMS. 268 (2000), 145–176.MathSciNetCrossRefGoogle Scholar
  30. [G-L.2]
    R. Gulliver and W. Littman, The use of geometric tools in the boundary control of partial differential equations, Proceedings of 3rd International ISAA C Contress, Berlin, August 2001.Google Scholar
  31. [He.1]
    E. Hebey, Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, Springer, 1996.MATHGoogle Scholar
  32. [Ho.1]
    L.F. Ho, Observabilite frontiere de l’equation des ondes, C. R. Acad. Sci. Paris, Ser. I Math. 202 (1986), 443–446.Google Scholar
  33. [Hor.1]
    L. Hormander, Linear Partial Differential Operators, Springer Verlag, 1963.MATHGoogle Scholar
  34. [Hor.2]
    L. Hormander, The Analysis of Linear Partial Differential Operators, Vol. III, Springer Verlag, Berlin/New York, 1985.Google Scholar
  35. [Hor.3]
    L. Hormander, On the characteristic Cauchy problem, Ann. Math. 88 (1968).Google Scholar
  36. [Hor.4]
    L. Hormander, On the uniqueness of the Cauchy problem, II, Math. Scand. 7 (1959), 177–190.MathSciNetGoogle Scholar
  37. [Hor.5]
    L. Hormander, On the uniqueness of the Cauchy problem under partial analyticity assumptions, in Geometrical Optics and Related Topics, F. Colombini and N. Lerner (eds.), Birkhauser, 1997.Google Scholar
  38. [Hn.1]
    M.A. Horn, Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity, J. Math. Anal. Appl. 223 (1998), 126–150.MathSciNetMATHCrossRefGoogle Scholar
  39. [Hn.2]
    M.A. Horn, Sharp trace regularity of the traces to solutions of dynamic elasticity, J. Math. Systems, Estimation and Control 8 (1998), 217–229.MathSciNetMATHGoogle Scholar
  40. [Koi]
    W. T. Kolter, On the foundations of the linear theory of thin elastic walls, Proc. Kon. Ned. Akad. Wetensch. B73 (1970), 169–195.Google Scholar
  41. [I.1]
    V. Isakov, A nonhyperbolic Cauchy problem for Ob Oe and its applications to elasticity theory, Comm. PDE’s XXXIX (1986), 747–767.MathSciNetGoogle Scholar
  42. [I.2]
    V. Isakov, Inverse Problems for Partial Differential Equations, Springer Verlag, 1998.MATHGoogle Scholar
  43. [I.3]
    V. Isakov, Uniqueness of the continuation across a time-like hyperplane and related inverse problems for hyperbolic equations, Comm. Partial Diff. Eqn. 14 (1989), 465–478.MathSciNetMATHGoogle Scholar
  44. [I.4]
    V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1990.MATHGoogle Scholar
  45. [I.5]
    V. Isakov, On the uniqueness of the continuation for a thermoelastic system, preprint, 1998.Google Scholar
  46. [I.6]
    V. Isakov, On uniqueness on a lateral Cauchy problem with multiple characteristics, J. Diff. Eqns. 134 (1997), 134–147.MathSciNetMATHCrossRefGoogle Scholar
  47. [I-Y.1]
    V. Isakov and M. Yamamoto, Carleman estimate with Neumann boundary condition and its application to the observability inequality and inverse hyperbolic problems, Contemporary Mathematics, AMS 268 (2000).Google Scholar
  48. [K.1]
    V. K. Omornik, Exact controllability and stabilization: the multiplier method, Research in Applied Mathematics, 1994, Masson/John Wiley.Google Scholar
  49. [K-K.1]
    M.K. Azami and M.V. Ilibanov, Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities, Applicable Analysis 50 (1993), 93–102.MathSciNetCrossRefGoogle Scholar
  50. [Lag. 1]
    J. Lagnese, Decay of solutions of the wave equation in bounded domains, JDE 50 (1983), 163–182.MathSciNetMATHCrossRefGoogle Scholar
  51. [Lag.2]
    J. Lagnese, Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Anal. 16 (1991), 35–54.MathSciNetMATHCrossRefGoogle Scholar
  52. [Lag.3]
    J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989.MATHCrossRefGoogle Scholar
  53. [L-L.1]
    J. Lagnese and J.L. Lions, Modelling, Analysis and Control of Thin Plates, Masson, 1988.MATHGoogle Scholar
  54. [Las.1]
    I. Lasiecka, Controllability of a viscoelastic Kirchoff plate, Int. Series Num. Math. 91 (1989), 237–247, Birkhauser Verlag, Basel.MathSciNetGoogle Scholar
  55. [Las.2]
    I. Lasiecka, Mathematical control theory in structural acoustic problems, Mathematical Models and Methods in A pplied Sciences 8 (1998), 1119–1153.MathSciNetMATHCrossRefGoogle Scholar
  56. [Las.3]
    I. Lasiecka, Boundary stabilization of a 3-dimensional structural acoustic model, J. Math. Pure Appl. 18 (1999), 203–232.MathSciNetGoogle Scholar
  57. [Las.4]
    I. Lasiecka, Intermediate solutions to full von Karman systems of dynamic nonlinear elasticity, Appl. Anal. 68 (1998).Google Scholar
  58. [Las.5]
    I. Lasiecka, Uniform stabilizability of a full von Karman system with nonlinear boundary feedback, SIAM J. Control 36(4) (1998), 1376–1422.MathSciNetMATHCrossRefGoogle Scholar
  59. [Las.6]
    I. Lasiecka, Uniform decay rates for full von Karman system of dynamic elasticity with free boundary conditions and partial boundary dissipation, Comm. PDE 24 (1999), 1801–1849.MathSciNetMATHCrossRefGoogle Scholar
  60. [Las.7]
    I. Lasiecka, Mathematical Control Theory of Coupled PDEs, NSFCMBS Lecture Notes (2001), SIAM.Google Scholar
  61. [L-M.1]
    I. Lasiecka and R. Marchand, Uniform decay for solutions to nonlinear shells with nonlinear dissipation, Nonlinear Analysis 30 (1997), 5409–5418.MathSciNetMATHCrossRefGoogle Scholar
  62. [Las- Hor.1]
    I. Lasiecka and M.A. Horn, Asymptotic behavior with respect to thickness of boundary stabilizing feedback for the Kirchoff plate, J. Diff. Eqns. 114(2) (1994), 396–433.MathSciNetMATHCrossRefGoogle Scholar
  63. [L-O.1]
    I. Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. PDE 24 (11 & 12) (1999), 2069–2107.MathSciNetMATHCrossRefGoogle Scholar
  64. [L-Ta.1]
    I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Diff. Int. Eqns. 6 (1993), 507–533.MathSciNetMATHGoogle Scholar
  65. [L-T.1]
    I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with £2 (0,00; £2 (I”))-feedback control in the Dirichlet boundary conditions, J. Diff. Eqns. 66 (1987), 340–390.MathSciNetMATHCrossRefGoogle Scholar
  66. [L-T.2]
    I. Lasiecka and R. Triggiani, Exact controllability of the Euler Bernoulli equation with L 2 (Σ)-control only in the Dirichlet B. C., Atti Acad. Naz. Lincei Rend. Cl. Sc. Fis. Math. Nat. Vol. LXXXII, No. 1(1988), Rome.Google Scholar
  67. [L-T.3]
    I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optimize 19 (1989), 243–290.MathSciNetMATHCrossRefGoogle Scholar
  68. [L-T.4]
    I. Lasiecka and R. Triggiani, Exact controllability ‘of the Euler Bernoulli equations with controls in the Dirichlet and Neumann B.C.: A nonconservative case, SIAM J. Control Optim. 21 (1989), 330–373.MathSciNetCrossRefGoogle Scholar
  69. [L-T.5]
    I. Lasiecka and R. Triggiani, Exact controllability of the Euler Bernoulli equation with boundary controls for displacement and moment, JMAA 146 (1990), 1–33.MathSciNetMATHGoogle Scholar
  70. [L-T.6]
    I. Lasiecka and R. Triggiani, Sharp regularity for mixed second-order hyperbolic equations of Neumann type, Part I: The L 2-boundary case, Annal. di Matemat. Pura e Appl. (IV) 151 (1990), 285–367.MathSciNetCrossRefGoogle Scholar
  71. [L-T.7]
    I. Lasiecka and R. Triggiani, Exact controllability of the semilinear abstract system with application to waves and plates, Appl. Math. Optimize 23 (1991), 109–154.MathSciNetMATHCrossRefGoogle Scholar
  72. [L-T.8]
    I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of the Schrodinger equation, Diff. Int. Eqns. 5 (1991), 521–535.Google Scholar
  73. [L-T.9]
    I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only in Δw|Σ, J. Diff. Eqns. 93 (1991), 62–101.MathSciNetMATHCrossRefGoogle Scholar
  74. [L-T.10]
    I. Lasiecka and R. Triggiani, Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions, Part II: General boundary data, J. Diff. Eqns. 93 (1991), 112–164.CrossRefGoogle Scholar
  75. [L-T.11]
    I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Applications to Boundary/Point Control Problems: Continuous Theory and Approximation Theory, Springer Verlag LNICS, Vol. 164 (1991).CrossRefGoogle Scholar
  76. [L-T.12]
    I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometric conditions, Appl. Math. Optim. 25 (1992), 189–224.MathSciNetMATHCrossRefGoogle Scholar
  77. [L-T.13]
    I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler-Bernoulli equations, Appl. Math. Opiimiz. 28 (1993), 277–306.MathSciNetMATHCrossRefGoogle Scholar
  78. [L-T.14]
    I. Lasiecka and R. Triggiani, A-Priori Observability Inequalities, Chapter 1, Lecture Notes, University of Virginia, May 1995.Google Scholar
  79. [L-T.15]
    I. Lasiecka and R. Triggiani, Abstract models and semigroup wellposedness of spherical shells with boundary dissipation, invited paper, Dynam. Sys. Appl. 4 (1995), 453–471, World Scientific Series in Applicable Analysis.MathSciNetCrossRefGoogle Scholar
  80. [L-T.16]
    I. Lasiecka and R. Triggiani, Carleman estimates and uniqueness for the system of strongly coupled PDEs of spherical shells, Special volume of Zeitschrift fur Angewandte Mathematik and Mechanik, ZAMM, Akademie Verlag, Berlin, ICIAM 1995, 76, supp. 4 (1996), 277–280.Google Scholar
  81. [L-T.17]
    I. Lasiecka and R. Triggiani, Carleman Estimates and Exact Boundary Controllability for a System of Coupled, Non-Conservative Second-Order Hyperbolic Equations, Lecture Notes in Pure and Applied Mathematics, Vol. 188, pp. 215–243, Marcel Dekker, New York, 1997, J.P. Zolesio and G. Da Prato (eds.).Google Scholar
  82. [L-T.18]
    I. Lasiecka and R. Triggiani,.Two direct proofs of analyticity of the s. c. semigroup arising in abstract thermo-elastic equations, Advances in Diff. Eqns. 3 (1998), 387–416.MathSciNetMATHGoogle Scholar
  83. [L-T.19]
    I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C., Abstract Appl. Anal. 3(1–2) (1998), 153–169.MathSciNetMATHCrossRefGoogle Scholar
  84. [L-T.20]
    I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free B.C., Annali Scuola Normale Superiore, Pisa, cl. sci. (4), XXVII (1998).Google Scholar
  85. [L-T.21]
    I. Lasiecka and R. Triggiani, Exact null controllability of structurally damped and thermo-elastic parabolic models, Memoria, Academia dei Lincei Rome (Italy), Sezione Matematica 9 (1998), 943–969.MathSciNetGoogle Scholar
  86. [L-T.22]
    I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, European Soc. Appl. Math. (ESIAM) 4 (1999), 199–222.MathSciNetGoogle Scholar
  87. [L-T.23]
    I. Lasiecka and R. Triggiani, sharp trace result on a thermo-elastic plate equation with coupled hinged/Neumann boundary conditions, Discrete Cont. Dynam. Sys. 5 (1999), 585–599.MathSciNetMATHCrossRefGoogle Scholar
  88. [L-T.24]
    I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Vol. 1 (680 pp.) and Vol. II (446 pp.), Cambridge University Press, 2000.Google Scholar
  89. [L-T.25]
    I. Lasiecka and R. Triggiani, Feedback Noise Control in an Acoustic Chamber: Mathematical Theory, Gordon and Breach Scientific Publishers, 2000, 89–111.Google Scholar
  90. [L-T.26]
    I. Lasiecka and R. Triggiani, Exact boundary controllability of a first order non-linear hyperbolic equation with non-local integral term arising in epidemic modeling, Direct and Inverse Problems of Matheamtical Physics R.P. Gilbert, J. Kajiwara, U. Xu (Editors), Kluwer (2000), 363–398.Google Scholar
  91. [L-T.27]
    I. Lasiecka and R. Triggiani, Structural decomposition of thermoelastic semigroups with rotational forces, Semigroup Forum 60 (2000), 1–61.MathSciNetCrossRefGoogle Scholar
  92. [L-T.28]
    I. Lasiecka and R. Triggiani, A sharp trace result of, Kirchof and thermo-elastic plate equations with free boundary conditions, Rocky Mtn. J. Math. 30(3) (Fall 2000), 981–1024.MathSciNetMATHCrossRefGoogle Scholar
  93. [L-T.29]
    I. Lasiecka and R. Triggiani, Uniform stabilization of a shallow shell model with nonlinear boundary feedbacks, J. Math. Anal. Appl. 269 (2002), 642–688.MathSciNetMATHCrossRefGoogle Scholar
  94. [L-T.30]
    I. Lasiecka and R. Triggiani, L2(Σ)-regularity of the boundary → boundary operator B* L for hyperbolic and Petrowski PDEs, submitted.Google Scholar
  95. [L-L-T.1]
    I. Lasiecka, J.L. Lions, and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pures Appl. 65 (1981), 149–192.MathSciNetGoogle Scholar
  96. [L-T-V.1]
    I. Lasiecka, R. Triggiani, and W. Valente: Uniform stabilization of spherical shells by boundary dissipation, Advances Diff. Eqns. 1(4) (1996), 635–674.MathSciNetMATHGoogle Scholar
  97. [L-V.1]
    I. Lasiecka and W. Valente, Uniform stabilization of a nonlinear shallow and tin spherical cap, JMAA 22 (1996), 951–994.MathSciNetGoogle Scholar
  98. [L-T-Y.1]
    I. Lasiecka, R. Triggiani, and P-F. Yao, Exact controllability for second-order hyperbolic equations with variable coefficientprincipal part and first-order terms, Nonlinear Anal. 30 (1997), 111–122.MathSciNetMATHCrossRefGoogle Scholar
  99. [L-T-Y.2]
    I. Lasiecka, R. Triggiani, and P-F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl. 235 (1999), 13–57.MathSciNetMATHCrossRefGoogle Scholar
  100. [L-T-Y.3]
    I. Lasiecka, R. Triggiani, and P-F. Yao, An observability estimate in L2 X H-1 for second-order hyperbolic equations with variable coefficients, Control of Distributed Parameter and Stochastic Systems, S. Chen, X. Li, J. Yong, X. Zhou (eds.), Kluwer Academic Publishers, Dordrect, 1999.Google Scholar
  101. [L-T-Y.4]
    I. Lasiecka, R. Triggiani, and P-F. Yao, Carleman estimates for a plate equation on a Riemannian manifold with energy level terms, Analysis and Applications, Chapter 15, 199–236 ISAAC, 2001; KIuwer, to appear in 2003.Google Scholar
  102. [L-T-Z.1]
    I. Lasiecka, R. Triggiani, and X. Zhang, Nonconservative wave equations with unobserved Neumann B.C.: Global uniqueness and observability in one shot, Contemporary Mathematics, AMS 268 (2000), 227–326.MathSciNetCrossRefGoogle Scholar
  103. [L-T-Z.2]
    I. Lasiecka, R. Triggiani, and X. Zhang, Nonconservative Schrodinger equations with unobserved Neumann B.C.: Global uniqueness and observability in one shot, Spring 2002. Announcement, under the same title, to appear in the Proceedings of the Conference, “Analysis and Optimization of Differential Systems,” held at Ovidius University, Constanta, Romania, Sept. 10–15, 2002.Google Scholar
  104. [L-R-S.1]
    M.M. Lavrentev, V.G. Romanov, and S.P. Shishatskü: III-Posed Problems of Mathematical Physics and Analysis, English transla tion. (The original: Nauka Moscow, 1980), American Mathematical Society, Providence, RI, 1986.Google Scholar
  105. [Le.1]
    G. Lebeau, Control analytique, I, Estimations a priori, Duke Math. J. 68 (1992), 1–30.MathSciNetMATHCrossRefGoogle Scholar
  106. [Le.2]
    G. Lebeau, Controle de l’equation de Schrodinger, J. Math. Pures Appl. 71 (1992), 267–291.MathSciNetMATHGoogle Scholar
  107. [Le.3]
    G. Lebeau, Controle des ondes amorties, Prepublications de Universite de Paris-Sud 19 (1994).Google Scholar
  108. [L.1]
    J.L. Lions, Controllabilite Exacte, Stabilization et Perturbation des Systemes Distribues, Vol. 1, Masson, Paris, 1988.Google Scholar
  109. [Lit.1]
    W. Littman, Near-optimal-time boundary controllability for a class of hyperbolic equations, Control Problems for Systems Described by Partial Differential Equations and Applications (Gainesville, FL, 1986), 307–312, Lecture Notes in Control and Inform. Sci. 97, Springer, Berlin-New York, 1987.Google Scholar
  110. [Lit.2]
    W. Littman, Remarks on global uniqueness theorems for partial differential equations, Contemporary Mathematics, AMS 268 (2000).Google Scholar
  111. [Lit.3]
    W. Littman, Boundary controllability for polyhedral domains, LNCIS, Springer Verlag, 178 (1992), 272–284.Google Scholar
  112. [Lit-Li.1]
    W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow, SIAM J. Appl. Math. 1 (1998), 17–34.MathSciNetGoogle Scholar
  113. [L-H.1]
    W. Littman and M. A. Horn, Boundary control of a Schrodinger equation with nonconstant principal part, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 174 (1996), 101–106.MathSciNetGoogle Scholar
  114. [Lit-Ta.1]
    W. Littman and S.W. Taylor, Smoothing evolution equations and boundary control theory, J. d’Analyse Math. 59 (1992), 201–215.MathSciNetCrossRefGoogle Scholar
  115. [M.1]
    E. Machtyngier, Controlabilite exacte et stabilizativ frontiere de l’equation de Schrodinger, C. R. Acad. Sci. Paris, Ser. I, Math 310 (1990), 801–806.MathSciNetMATHGoogle Scholar
  116. [Miz.1]
    Mizohata, personal communication.Google Scholar
  117. [P-T.1]
    J. Puel and M. Tucsnak, Boundary stabilization for the von Karman equations, SIAM J. Control 33 (1996), 255–273.MathSciNetCrossRefGoogle Scholar
  118. [Ra.1]
    J. Ralston, Gaussian beams and the propagation of singularities, Studies in Partial Differential Equations, W. Littman (ed.), MAA Studies in Mathematics 23 (1982), 206–248.Google Scholar
  119. [R.1]
    D.L. Russell, Controllability and stabilizability theory for linear partial differential equations, recent progress and open questions, SIAM REVIEW 20 (1978), 639–739.MathSciNetMATHCrossRefGoogle Scholar
  120. [S.1]
    T. Shirota, A· remark on the unique continuation theorem for certain fourth order elliptic equations, Proc. Japan Acad. 36 (1960), 571–573.MathSciNetCrossRefMATHGoogle Scholar
  121. [S-Y]
    R. Schoen and S.-T. Yau, Lectures on Differential Geometry, International Press, Boston 1994.MATHGoogle Scholar
  122. [Ta.1]
    D. Tataru, A-priori pseudoconvexity energy estimates in domains with boundary applications to exact boundary controllability for conservative PDEs, Ph.D. Thesis, University of Virginia, May 1992.Google Scholar
  123. [Ta.2]
    D. Tataru, Boundary controllability for conservative PDEs, Appl. Math. t3 Optimiz. 31 (1995), 257–295.MathSciNetMATHCrossRefGoogle Scholar
  124. [Ta.3]
    D. Tataru, A-priori estimates of Carleman’s type in domains with boundaries, J. Math. Pures et Appl. 73 (1994), 355–387.MathSciNetMATHGoogle Scholar
  125. [Ta.4]
    D. Tataru, Unique continuation for solutions to PDEs, between Horrnander ‘s theorem and Holmgren’s theorem, Comm. Partial Diff. Eqns. 20(5 & 6) (1995), 855–884.MathSciNetMATHGoogle Scholar
  126. [Ta.5]
    D. Tataru, On the regularity of boundary traces for the wave equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26(4) (1998), 185–206.MathSciNetMATHGoogle Scholar
  127. [Ta.6]
    D. Tataru, Unique continuation for partially differential operators with partial analytic coefficient, J. Math. Pure Appl. 78 (1999), 505–521.MathSciNetMATHGoogle Scholar
  128. [Ta.7]
    D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pure Appl. 75 (1996), 367–408.MathSciNetMATHGoogle Scholar
  129. [Ta.8]
    D. Tataru, Unique continuation problems for PDEs, this volume.Google Scholar
  130. [T-L.1]
    A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, 2nd ed., John Wiley, New York, 1980.MATHGoogle Scholar
  131. [Tay.1]
    M. Taylor, Partial Differential Equations, Vols. 1, 2, Springer-Verlag, 1991.Google Scholar
  132. [Tay.2]
    M. Taylor, Tools for P.D.E.: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Google Scholar
  133. [Tr.1]
    R. Triggiani, Exact controllability on L 2 (Ω) × H -1 (Ω) of the wave equation with Dirichlet B.C., AMO (1988), 241–247.Google Scholar
  134. [Tr.2]
    R. Triggiani, Carleman estimates and exact boundary controllability for a system of coupled non-conservative Schrodinger equations, Rend. Is tit. Math. Univ. Trieste (Italy), suppI. Vol. XXVIII (1997), 453–504; volume in memory of P. Grisvard.Google Scholar
  135. [Tr.3]
    R. Triggiani, Regularity theory, exact controllability and optimal quadratic cost problem for spherical shells with physical boundary controls. Invited paper in special issue for Control and Cybernetics, Polish Academy of Sciences, Control Problems for Partial Differential Equations 25(3) (1996), 553–569.MathSciNetMATHGoogle Scholar
  136. [T-Y.1]
    R. Triggiani and P.F. Yao, Inversa/observability estimates for Schrodinger equations with variable coefficients, Control ξ Cybernetics 28 (1999), 627–664. Special volume on control of PDEs.MathSciNetMATHGoogle Scholar
  137. [T-Y.2]
    R. Triggiani and P.F. Yao, Carleman estimates with no lower-order terms for general Riemannian wave equations. Global uniqueness and observability in one shot, Appl. Math. ξ Optim. 46 (Sept. I Dee. 2002), 331–375. Special issue dedicated to J.L. Lions.MathSciNetMATHCrossRefGoogle Scholar
  138. [Wu.1]
    H. Wu, The Bochner technique in differential geometry, Math. Reports 3 (Part 2), Hardwood Academic Publishers, London, Paris, 1988.Google Scholar
  139. [Y.1]
    P.F. Yao, On the observability inequalities for exact controllability of wave equations with variable coefficients, SIAM J. Control Optim. 37 (1999), 1568–1599.MathSciNetMATHCrossRefGoogle Scholar
  140. [Y.2]
    P.F. Yao, Observability inequalities for the Euler-Bernoulli plate with variable coefficients, Contemporary Mathematics, Amer. Math. Soc. 268 (2000), 383–406.Google Scholar
  141. [Y.3]
    P.F. Yao, On the shallow shell equations, manuscript, 1999.Google Scholar
  142. [Y.4]
    P.F. Yao, Observability inequalities for shallow shells, SIAM J. Control 38 (2000), 1729–1756.MATHCrossRefGoogle Scholar
  143. [Z.1]
    E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Non-Linear PDEs and their Applications, Research Notes in Mathematics, Pitman, Boston (19), 1265–12.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • R. Gulliver
    • 1
  • W. Littman
    • 1
  • I. Lasiecka
    • 2
  • R. Triggiani
    • 2
  1. 1.School of Mathematics, Vincent HallUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Mathematics, Kerchof HallUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations