A Review of Selected Works on Crack Identification

  • Kurt Bryan
  • Michael S. Vogelius
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 137)


We give a short survey of some of the results obtained within the last 10 years or so concerning crack identification using impedance imaging techniques. We touch upon uniqueness results, continuous dependence results, and computational algorithms.


Harmonic Function Planar Crack Forward Problem Boundary Measurement Finite Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adamjan V.M., Arov D.Z., and Krein M.G., Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem. Math. USSR Sbornik, 15, 1971, pp. 31–73.CrossRefGoogle Scholar
  2. [2]
    Alessandrini G., Examples of instability in inverse boundary-value problems, In verse Probl, 13(4), 1997, pp. 887–897.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Alessandrini G., Stable Determination of a crack from boundary measurement, Proc. Roy. Soc. Edinburgh Sect. A, 123, 1993, pp. 497–516.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Alessandrini A., Beretta E., and Vessella S., Determining linear cracks by boundary measurements: Lipschitz stability, Siam J. Math. Anal., 27(2), 1996, pp. 361–375.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Alessandrini G. and Dibenedetto E., Determining 2-dimensional crack in 3- dimensional bodies: Uniqueness and stability, Indiana U Math. J., 46(1), 1997, pp. 1–82.MathSciNetMATHGoogle Scholar
  6. [6]
    Alessandrini G. and Magnanini R., The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola. Norm. Sup. Pi. CI. Sci., 19(4), 1992, pp. 567–589.MathSciNetMATHGoogle Scholar
  7. [7]
    Alessandrini G. and Magnanini R., Elliptic equations in divergence form, geo metric critical points of solutions, and Stekloff eigenfunctions, Siam J. Math. Anal, 25, 1994, pp. 1259–1268.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Alessandrini G. and Rondi L., Stable determination of a crack in a planar inhomogeneous conductor, Siam J. Math. Anal., 30(2), 1998, pp. 326–340.MathSciNetCrossRefGoogle Scholar
  9. [9]
    Alessandrini G. and Diaz Valenzuela A., Unique determination of multiple cracks by two measurements, Siam J. Cont. Opt., 34(3), 1996, pp. 913–921.MATHCrossRefGoogle Scholar
  10. [10]
    Andersen K., Brooks S., and Hansen M., Bayesian approach to crack detec tion in electrically conducting media, Inverse ProbL, 17, 2001, pp. 121–136.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Andrieux S. and Ben Abda A., Identification de fissures planes par une donneé de bord unique; un procédé direct de localisation et d’identification, C.R. Acad. Sci., Paris I, 1992, 315, pp. 1323–1328.Google Scholar
  12. [12]
    Andrieux S., Ben Abda A., and Jaoua M., On the inverse emergent plane crack problem, Math. Method Appl. Sci., 21(10), 1998, pp. 895–906.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Andrieux S. and Ben Abda A., Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse Probl, 12, 1996, pp. 553- 563.MATHCrossRefGoogle Scholar
  14. [14]
    Andrieux S., Ben Abda A., and Bui H.D., Reciprocity principle and crack iden tification, Inverse Probl., 15(1), 1999, pp. 59–65.MATHCrossRefGoogle Scholar
  15. [15]
    Aparicio N.D. and Pidcock M.K., On a class of free boundary problems for the Laplace equation in two dimensions, Inverse Probl., 14(1), 1998, pp. 9–18.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Aparicio N.D. and Pidcock M.K., The boundary inverse problem for the Laplace equation in two dimensions, Inverse Probl., 12(5), 1996, pp. 565–577.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Bannour T., Ben Abda A., and Jaoua M., A semi-explicit algorithm for the reconstruction of 3D planar cracks, Inverse Probl., 13(4), 1997, pp. 899–917.MATHCrossRefGoogle Scholar
  18. [18]
    Baratchart L., Leblond J., Mandrea F., and Saff E.B., How can the meromorphic approximation help to solve some 2D inverse problems for the Laplacian?, Inverse Probl., 15(1), 1999, pp. 79–90.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Ben Abda A., Ben Ameur H., and Jaoua M., Identification of 2D cracks by elastic boundary measurements, Inverse Probl., 15(1), 1999, pp. 67–77.MATHCrossRefGoogle Scholar
  20. [20]
    Ben Abda A., Chaabane S., Dabaghi F. EL, and Jaoua M., On a non-linear ge ometrical inverse problem of Signorini type: Identifiablity and stability, Math. Method Appl. Sci., 21(15), 1998, pp. 1379–1398.MATHCrossRefGoogle Scholar
  21. [21]
    Brühl M. Explicit characterization of inclusions in electrical impedance tomogra phy, preprint.Google Scholar
  22. [22]
    Brühl M. and Hanke M., Numerical implementation of two non-iterative meth ods for locating inclusions by impedance tomography, Inverse Probl., to appear.Google Scholar
  23. [23]
    Brühl M., Hanke M., and Pidcock M., Crack detection using electrostatic mea surements, M2AN Math. Model. Numer. Anal., 35, 2001, pp. 595–605.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Brühl M., Hanke M., and Vogelius M.S., A direct impedance tomography algo rithm for locating small inhomogeneities, Numerische Mathematik, to appear.Google Scholar
  25. [25]
    Bryan K. and Vogelius M., A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements, Siam J. Math. Anal., 23(4), 1992, pp. 950–958.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    Bryan K. and Vogelius M., Computational algorithm to determine crack loca tions from electrostatic boundary measurements-the case of multiple cracks. Int. J. Engr. Sci., 32(4), 1994, pp. 579–603.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    Bryan K. and Vogelius M., Effective behavior of clusters of microscopic cracks inside a homogeneous conductor. Asymptotic Anal., 16(2), 1998, pp. 141–179.MathSciNetMATHGoogle Scholar
  28. [28]
    Bryan K., Liepa V., and Vogelius M., Reconstruction of multiple cracks from experimental, electrostatic boundary measurements, proceedings of the conference on Inverse Problems and Optimal Design in Industry, July 8–10, 1993, Philadelphia PA.Google Scholar
  29. [29]
    Bui H.D., Constantinescu A., and Maigre H., Inverse scattering of a planar crack in 3D acoustics: closed form solution for a bounded body, Cr Acad. Sci. II B, 327(10), 1999, pp. 971–976.MATHGoogle Scholar
  30. [30]
    Capdeboscq Y., and Vogelius M.S., A general representation formula for bound ary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, M2An Math. Model. Numer. Anal., to appear.Google Scholar
  31. [31]
    Diaz Valenzuela A., Unicita’ e stabilita per il problema inverse del crack perfet- tamenta isolante, thesis, Universita’ di Trieste, Trieste, Italy, 1993.Google Scholar
  32. [32]
    Elcrat A.R. and Hu C.L., Determination of surface and interior cracks from electrostatic boundary measurements using Schwarz-Christoffel transformations, Int J. Engr. Sci., 34(10), 1996, pp. 1165–1181.MATHCrossRefGoogle Scholar
  33. [33]
    Elcrat A.R., Isakov V., and Neculoiu O., On finding a surface crack from boundary measurements, Inverse Probl., 11(2), 1995, pp. 343–351.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    Eller M., Identification of cracks in three-dimensional bodies by many boundary measurements. Inverse Probl., 12(4), 1996, pp. 395–408.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    Friedman A. and Vogelius M., Determining cracks by boundary measurements, Ind. U Math. J., 38, 1989, pp. 527–556.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    Kim H. and Seo J., Unique determination of a collection of a finite number of cracks from two boundary measurements, Siam J. Math. Anal. 27, 1996, pp. 1336–1340.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    Kirsch A., Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Probl, 14, 1998, pp. 1489–1512.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    Kolehmainen V., Arridge S.R., Et AL., Recovery of region boundaries of piece- wise constant coefficients of an elliptic Pde from boundary data, Inverse Probl, 15(5), 1999, pp. 1375–1391.MATHCrossRefGoogle Scholar
  39. [39]
    Liepa V., Santosa F., and Vogelius M., Crack determination from bound ary measurements-reconstruction using experimental data, J. Nondestructive Evaluation, 12, 1993, pp. 163–174.CrossRefGoogle Scholar
  40. [40]
    Mellings S.C. and Aliabadi M.H., Three-dimensional flaw identification using inverse analysis, Int. J. Engr. Sci., 34(4), 1996, pp. 453–469.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    Miller K., Stabilized numerical analytic prolongation with poles, Siam J. Appl. Math., 18, 1970, pp. 346–363.MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    Nishimura N. and Kobayashi S., Determination of cracks having arbitrary shapes with the boundary integral-equation method, Eng. Anal. Bound. Elem., 15(2), 1995, pp. 189–195.CrossRefGoogle Scholar
  43. [43]
    Rondi L., Optimal stability estimates for the determination of defects by electro static measurements, Inverse Probl. 15(5), 1999 pp. 1193–1212.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    Santos A F. and Vogelius M., A computational algorithm to determine cracks from electrostatic boundary measurements, Int. J. Engr. Sci., 29, 1991, pp. 917–937.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Kurt Bryan
    • 1
  • Michael S. Vogelius
    • 2
  1. 1.Rose-Hulman Institute of TechnologyTerre HauteUSA
  2. 2.Rutgers UniversityNew BrunswickUSA

Personalised recommendations