Advertisement

After Kummer, a New Light

  • Paulo Ribenboim

Abstract

I’ll report on the work of Mirimanoff, inspired by the last of Kummer’s papers. With his great ability, he refined Kummer’s treatment for the first case and obtained new congruences. On the other hand, due to the difficulty in achieving these comparatively meager improvements, it was obvious that no further progress would be forthcoming along these lines.

Keywords

Bernoulli Number Prime Integer Fermat Quotient Closed Unit Interval Mersenne Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1816 Herschel, J. F. W. On the development of exponential functions, together with several new theorems relating to finite differences. Philosophical Transactions London, 106, 1816, 25–45.CrossRefGoogle Scholar
  2. 1847 Cauchy, A. Mémoire sur diverses propositions relatives à la théorie des nombres (4 parts). C.R. Acad. Sci. Paris, 24, 1847, 996–999.Google Scholar
  3. 1847 Cauchy, A. Mémoire sur diverses propositions relatives à la théorie des nombres (4 parts). C. R. Acad. Sci. Paris, 25, 1847, 132–138.Google Scholar
  4. 1847 Cauchy, A. Mémoire sur diverses propositions relatives à la théorie des nombres (4 parts). C. R. Acad. Sci. Paris, 25, 1847, 177–183Google Scholar
  5. 1847 Cauchy, A. Mémoire sur diverses propositions relatives à la théorie des nombres (4 parts). C. R. Acad. Sci. Paris, 25, 1847, 242–245.Google Scholar
  6. 1847 Cauchy, A. Reprinted in Oeuvres Complètes (1), 10, 1847 Gauthier-Villars, Paris, 296–299Google Scholar
  7. 1847 Cauchy, A. Reprinted in Oeuvres Complètes (1), 10, 1847 Gauthier-Villars, Paris, 354–359Google Scholar
  8. 1847 Cauchy, A. Reprinted in Oeuvres Complètes (1), 10, 1847 Gauthier-Villars, Paris, 360–365Google Scholar
  9. 1847 Cauchy, A. Reprinted in Oeuvres Complètes (1), 10, 1847 Gauthier-Villars, Paris, 366–368Google Scholar
  10. 1861 Sylvester, J. J. Sur une propriété des nombres premiers qui se rattache au théorème de Fermat. C. R. Acad. Sci. Paris, 52, 1861, 161–163.Google Scholar
  11. Also in Mathematical Papers, vol. 2, 229–231, Cambridge, Cambridge University Press, 1908.Google Scholar
  12. 1861 Sylvester, J. J. Note relative aux communications faites dans les séances de 28 Janvier et 4 Février 1861. C. R. Acad. Sci. Paris, 52, 1861, 307–308.Google Scholar
  13. Also in Mathematical Papers, vol. 2, 234–235, Cambridge, Cambridge Univ. Press, 1908.Google Scholar
  14. 1886 Bang, A. S. Taltheoretiske Undersøgelser. Tidskrift for Math., series 5, 4, 1886, 70–80, 130–137.Google Scholar
  15. 1886 Bang, A. S. Taltheoretiske Undersøgelser. Tidskrift for Math., series 5, 4, 1886, 130–137.Google Scholar
  16. 1892 Zsigmondy, K. Zur Theorie der Potenzreste. Monatshefte f. Math. 3, 1892, 265–284.MathSciNetCrossRefGoogle Scholar
  17. 1897 Hilbert, D. Die Theorie der algebraischen Zahlkörper. Jahresbericht d. Deutschen Math. Vereinigung 4, 1897, 175–546.Google Scholar
  18. Reprinted in Gesammelte Abhandlungen, vol. I, Chelsea Publ. Co., New York, 1965, 63–363.Google Scholar
  19. 1901 Glaisher, J. W. L. On the residues of rp -1 to modulus p 2 , p 3, etc.... Quart. J. Pure and Applied Math., 32, 1901, 1–27.Google Scholar
  20. 1904 Birkhoff, G. D. and Vandiver, H. S. On the integral divisors of a nb n . Annals of Math., (2), 5, 1904, 173–180.MathSciNetCrossRefGoogle Scholar
  21. 1905 Lerch, M. Zur Theorie des Fermatschen Quotienten (a p− 1 − 1)/p = q(a). Math. Annalen, 60, 1905,471–490.MathSciNetMATHGoogle Scholar
  22. 1905 Mirimanoff, D. L’équation indéterminée x l + y l + z l = 0 et le critérium de Kummer. J. reine u. angew. Math., 128, 1905, 45–68.Google Scholar
  23. 1909 Mirimanoff, D. Sur le dernier théorème de Fermat et le critérium de M. A. Wieferich. Enseignement Math., 11, 1909, 455–459.MATHGoogle Scholar
  24. 1909 Wieferich, A. Zum letzten Fermat’schen Theorem. J. reine u. angew. Math. 136, 1909, 293–302.Google Scholar
  25. 1910 Frobenius, G. Über den Fermatschen Satz. J. reine u. angew. Math., 137, 1910, 314–316.MATHGoogle Scholar
  26. Also in Gesammelte Abhandlungen, vol. 3, Springer-Verlag, Berlin, 1968, 428–430.Google Scholar
  27. 1910.
    Frobenius, G. Über den Fermatschen Satz II. Sitzungsber. Akad. d. Wiss. zu Berlin, 1910, 200–208.Google Scholar
  28. Also in Gesammelte Abhandlungen, vol. 3, Springer-Verlag, Berlin, 1968, 431–439.Google Scholar
  29. 1910.
    Frobenius, G. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Akad. d. Wiss. zu Berlin, 1910, 809–847.Google Scholar
  30. Also in Gesammelte Abhandlungen, vol. 3, Springer-Verlag, Berlin, 1968, 440–478.Google Scholar
  31. 1910 Mirimanoff, D. Sur le dernier théorème de Fermat. C. R. Acad. Sci. Paris, 150, 1910, 204–206.MATHGoogle Scholar
  32. 1911 Mirimanoff, D. Sur le dernier théorème de Fermat. J. reine u. angew. Math., 139, 1911, 309–324.MATHGoogle Scholar
  33. 1913 Landau, E. Réponse à une question de E. Dubouis. Existence d’une infinité de nombres premiers 2a3b ± 1 et ± 2a ± 3b . L’Interm. des Math., 20, 1913, 180.Google Scholar
  34. 1913.
    Meissner, W. Über die Teilbarkeit von 2 P − 2 durch das Quadrat der Primzahl p = 1093. Sitzungsber. Akad. d. Wiss. zu Berlin, 1913, 663–667.Google Scholar
  35. 1914.
    Frobenius, G. Über den Fermatschen Satz, III. Sitzungsber. Akad. d. Wiss. zu Berlin, 1914, 653–681.Google Scholar
  36. Also in Gesammelte Abhandlungen, vol. 3, Springer-Verlag, Berlin 1968, 648–676.Google Scholar
  37. 1914 Vandiver, H. S. Extension of the criteria of Wieferich and Mirimanoff in connection with Fermat’s last theorem. J. reine u. angew. Math., 144, 1914, 314–318.Google Scholar
  38. 1917 Pollaczek, F. Über den grossen Fermat’schen Satz. Sitzungsber. Akad. d. Wiss. Wien, Abt. IIa, 126, 1917, 45–59.MATHGoogle Scholar
  39. 1917 Vandiver, H. S. Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat’s quotient and Bernoulli numbers. Annals of Math., 18, 1917, 105–114.MathSciNetMATHCrossRefGoogle Scholar
  40. 1922 Beeger, N. G. W. H. On a new case of the congruence 2p -1 ≡ l(p 2). Messenger of Math., 51, 1922, 149–150.Google Scholar
  41. 1925 Vandiver, H. S. A new type of criteria for the first case of Fermat’s last theorem. Annals of Math., 26, 1925, 88–94.CrossRefGoogle Scholar
  42. 1927.
    Landau, E. Vorlesungen über Zahlentheorie, vol. III. S. Hirzel, Leipzig, 1927.Google Scholar
  43. Reprinted by Chelsea Publ. Co., New York, 1969.Google Scholar
  44. 1928 Morishima, T. Über die Fermatsche Vermutung. Proc. Imp. Acad. Japan, 4, 1928, 590–592.MathSciNetMATHCrossRefGoogle Scholar
  45. 1931 Morishima, T. Über den Fermatschen Quotienten. Jpn. J. Math., 8, 1931, 159–173.MATHGoogle Scholar
  46. 1931 Spunar, V.M. On Fermat’s last theorem, III. J. Wash. Acad. Sci., 21, 1931, 21–23.Google Scholar
  47. 1932 Morishima, T. Über die Fermatsche Vermutung, VII. Proc. Imperial Acad. Japan, 8, 1932, 63–66.MathSciNetCrossRefGoogle Scholar
  48. 1933–1934 Schwindt, H. Eine Bemerkung zu einem Kriterium von H. S. Vandiver. Jahresber. d. Deutschen Math. Verein. 43, 1933–1934, 229–232.Google Scholar
  49. 1934 Krasner, M. Sur le premier cas du théorème de Fermat. C. R. Acad. Sci. Paris, 199, 1934, 256–258.Google Scholar
  50. 1938 Gottschalk, E. Zum Fermatschen Problem. Math. Annalen, 115, 1938, 157–158.MathSciNetCrossRefGoogle Scholar
  51. 1938 Lehmer, E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Annals of Math., 39, 1938, 350–359.MathSciNetCrossRefGoogle Scholar
  52. 1939 Yamada, K. Ein Bemerkung zum Fermatschen Problem. Tôhoku Math. J., 45, 1939, 249–251.Google Scholar
  53. 1940 Rosser, J. B. A new lower bound for the exponent in the first case of Fermat’s last theorem. Bull. Amer. Math. Soc., 46, 1940, 299–304.MathSciNetCrossRefGoogle Scholar
  54. 1941 Rosser, J. B. An additional criterion for the first case of Fermat’s last theorem. Bull Amer. Math. Soc., 47, 1941, 109–110.MathSciNetCrossRefGoogle Scholar
  55. 1941 Yamada, K. Berichtigung zu der Note: Eine Bemerkung zum Fermatschen Problem. Tôhoku Math. J., 48, 1941, 193–198.Google Scholar
  56. 1946 Vandiver, H. S. Fermat’s last theorem; its history and the nature of the results concerning it. Amer. Math. Monthly, 53, 1946, 555–578.MathSciNetMATHCrossRefGoogle Scholar
  57. 1948 Gunderson, N. G. Derivation of Criteria for the First Case of Fermat’s Last Theorem and the Combination of these Criteria to Produce a New Lower Bound for the Exponent. Thesis, Cornell University, 1948.Google Scholar
  58. 1953 Vandiver, H. S. A supplementary note to a 1946 article on Fermat’s last theorem. Amer. Math. Monthly, 60, 1953, 164–167.MathSciNetMATHCrossRefGoogle Scholar
  59. 1956 Grebeniuk, D. G. Obobtshenie Teoremii Wieferich (Generalization of Wieferich’s theorem). Doklady A. N. Uzbekskoï SSR, 8, 1956, 9–11.Google Scholar
  60. 1963 Ferentinou Nicolacopoulou I. Une propriété des diviseurs du nombre r m + 1. Applications au dernier théorème de Fermat. Bull Soc. Math. Grèce, (N.S.), 4, 1963, 121–126.MATHGoogle Scholar
  61. 1965 Rotkiewicz, A. Sur les nombres de Mersenne dépourvus de diviseurs carrés et sur les nombres naturels n tels que n 2|2n − 2. Matematicky Vesnik, 2, 17, 1965, 78–80.MathSciNetGoogle Scholar
  62. 1967 Guy, R. K. The primes 1093 and 3511. Math. Student, 35, 1967, 204–206.MathSciNetMATHGoogle Scholar
  63. 1967 LeLidec, P. Sur une forme nouvelle des congruences de Kummer-Mirimanoff. C. R. Acad. Sci Paris, 265, 1967, 89–90.MathSciNetGoogle Scholar
  64. 1968 Linkovski, J. Sharpening of a theorem of Wieferich. Math. Nachr., 36, 1968, 141.MathSciNetMATHCrossRefGoogle Scholar
  65. 1968 Puccioni, S. Un teorema per una resoluzioni parziali del famoso problema de Fermat. Archimede, 20, 1968, 219–220.MathSciNetMATHGoogle Scholar
  66. 1969 LeLidec, P. Nouvelle forme des congruences de Kummer-Mirimanoff pour le premier cas du théorème de Fermat. Bull. Soc. Math. France, 97, 1969, 321–328.MathSciNetGoogle Scholar
  67. 1971 Brillhart, J., Tonascia, J., and Weinberger, P. On the Fermat quotient, in Computers in Number Theory, Academic Press New York, 1971, 213–222.Google Scholar
  68. 1971 Tuckermann, B. The 24th Mersenne prime. Proc. Nat. Acad. Sci. U.S.A., 68, 1971, 2319–2310.MathSciNetCrossRefGoogle Scholar
  69. 1975 Gandhi, J. M. and Stuff, M. On the first case of Fermat’s last theorem and the congruence 2p -1 ≡ 1 (mod p 3). Notices Amer. Math. Soc., 22, 1975, A-453.Google Scholar
  70. 1977 Johnson, W. On the non-vanishing of Fermat quotients. J. reine u. anqew. Math., 292, 1977 196–200.MATHGoogle Scholar
  71. 1978.
    Nickel, L. and Noll, C. Los Angeles Times, November 16, 1978, part II, page 1.Google Scholar
  72. See also: Nickel, L. and Noll, C. Le dernier premier, Gazette Sci. Math. Québec. 3, 1979, 27.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsJeffery Hall Queen’s UniversityKingstonCanada

Personalised recommendations