Advertisement

Abstract

To utilize the force of Kummer’s main theorem, it is imperative to determine when a prime p is regular. In theory, at least, this is simple. All one needs to do is to compute the class number of the cyclotomic field K p = ℚ(ζ p ), where ζ p is a primitive pth root of 1. And so Kummer began by discovering formulas for the class number. However, it soon became apparent that the computations involved were much too difficult, and other more suitable criteria for regularity were needed. These were also discovered by Kummer.

Keywords

Prime Ideal Class Number Bernoulli Number Arithmetic Property Principal Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1713 Bernoulli, J. Ars Conjectandi (opus posthumum), Bâle, 1713. Also in Die Werke von Jakob Bernoulli, vol. 3, Birkhäuser, Basel, 1975, 107–286.Google Scholar
  2. 1755 Euler, L. Institutiones Calculi Differentialis, Paris Posterions (Caput V), Imperial Acad. of Sciences, Petrograd, 1755. Also in Opera Omnia, ser. I, vol. X, Teubner, Leipzig and Berlin, 1913, 321–328.Google Scholar
  3. 1840 Clausen, T. Auszug aus einem Schreiben an Herrn Schumacher. Astronomische Nachr., 17, 1840, 351–352.Google Scholar
  4. 1840 von Staudt, C. Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend. J. reine u. angew. Math., 21, 1840, 372–376.CrossRefMATHGoogle Scholar
  5. 1845 von Staudt, C. “De Numeris Bernoullianis” and “De Numeris Bernoullianis Commentatio Altera”. Erlangen, 1845.Google Scholar
  6. 1850 Kummer, E.E.* Bestimmung der Anzahl nicht äquivalenter Classen fur die aus λten Wurzel der Einheit gebildeten complexen Zahlen und die Idealen Factoren derselben. J. reine u. angew. Math., 40, 1850, 93–116.CrossRefMATHGoogle Scholar
  7. 1850 Kummer, E. E. Zwei besondere untersuchungen über die Classen-Anzahl und über die Einheiten der aus λten Wurzeln der Einheit gebildeten complexen Zahlen. J. reine u. angew. Math., 40, 1850, 117–129.CrossRefMATHGoogle Scholar
  8. 1851 Kummer, E. E. Mémoire sur la théorie des nombres complexes composés de racines de l’unité et de nombres entiers. J. Math. Pures et Appl., 16, 1851, 377–498.Google Scholar
  9. 1861 Kummer, E. E. Über die Klassenanzahl der aus n-ten Einheitswurzeln gebildeten complexen Zahlen. Monatsber. Akad. d. Wiss., Berlin, 1861, 1051–1053.Google Scholar
  10. 1861 Sylvester, J. J. Sur une propriété de nombres premiers qui se rattache au théorème de Fermat. C. R. Acad. Sci. Paris, 52, 1861, 161–163. Also in Mathematical Papers, vol. 2, Cambridge University Press, Cambridge, 229–231.Google Scholar
  11. * See also Collected Papers, vol. I, edited by A. Weil, Springer-Verlag, Berlin, 1975.Google Scholar
  12. 1863 Kronecker, L. Über die Klassenanzahl der aus Wurzeln der Einheit gebildeten komplexen Zahlen. Monatsber. Akad. d. Wiss., Berlin, 1863, 340–345. Reprinted in Werke, I, Leipzig, Teubner, 1895, 125–131.Google Scholar
  13. 1863 Kummer, E.E. Über die Klassenanzahl der aus zusammengesetzten Einheitswurzeln gebildeten idealen complexen Zahlen. Monatsber. Akad. d. Wiss, Berlin, 1863, 21–28.Google Scholar
  14. 1874 Kummer, E.E. Über diejenigen Primzahlen λ fur welche die Klassenzahl der aus λ-ten Einheitswurzeln gebildeten complexen Zahlen durch λ theilbar ist. Monatsber. Akad. d. Wiss., Berlin, 1874, 239–248.Google Scholar
  15. 1878 Adams, J. C. Table of the values of the first 62 numbers of Bernoulli. J. reine u. angew. Math., 85, 1878, 269–272.MATHGoogle Scholar
  16. 1900 Glaisher, J. W. L. Fundamental theorems relating to the Bernoullian numbers. Messenger of Math., 29, 1900, 49–63.Google Scholar
  17. 1908 Hensel, K. Theorie der algebraischen Zahlen, Teubner, Leipzig, 1908.MATHGoogle Scholar
  18. 1915 Jensen, K. L. Om talteoretiske Egenskaber ved de Bernoulliske tal. Nyt Tidsskrift f. Math., B, 26, 1915, 73–83.Google Scholar
  19. 1917 Vandiver, H. S. Symmetric functions formed by systems of elements of a finite algebra and their connection with Fermat’s quotient and Bernoulli numbers. Annals of Math., 18, 1917, 105–114.MathSciNetCrossRefMATHGoogle Scholar
  20. 1930 Stafford, E. and Vandiver, H. S. Determination of some properly irregular cyclotomic fields. Broc. Nat. Acad. Sci. U.S.A., 16, 1930, 139–150.CrossRefMATHGoogle Scholar
  21. 1932 Vandiver, H. S. Note on the divisors of the numerators of Bernoulli’s numbers. Proc. Nat. Acad. Sci. U.S.A., 18, 1932, 594–597.CrossRefGoogle Scholar
  22. 1934 Rado, R. A new proof of a theorem of von Staudt. J. London Math. Soc., 9, 1934, 85–88.CrossRefMATHGoogle Scholar
  23. 1937 Vandiver, H. S. On Bernoulli numbers and Fermat’s last theorem. Duke Math. J., 3, 1937, 569–584.MathSciNetCrossRefGoogle Scholar
  24. 1938 Lehmer, E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Annals of Math., 39, 1938, 350–359.MathSciNetCrossRefGoogle Scholar
  25. 1939 Uspensky, J. V. and Heaslet, M. A. Elementary Number Theory, McGraw-Hill, New York, 1939.Google Scholar
  26. 1940 Grün, O. Eine Kongruenz für Bernoullische Zahlen. Jahresber. d. Deutschen Math. Verein., 50, 1940, 111–112.Google Scholar
  27. 1954 Carlitz, L. Note on irregular primes, Broc. Amer. Math. Soc., 5, 1954, 329–331.CrossRefMATHGoogle Scholar
  28. 1954 Lehmer, D. H., Lehmer, E., and Vandiver, H. S. An application of high speed computing to Fermat’s last theorem. Proc. Nat. Acad. Sci. U.S.A., 40, 1954, 25–33.MathSciNetCrossRefMATHGoogle Scholar
  29. 1955 Selfridge, J. L., Nicol, C. A., and Vandiver, H. S. Proof of Fermat’s last theorem for all exponents less than 4002. Proc. Nat. Acad. Sci. U.S.A., 41, 1955, 970–973.MathSciNetCrossRefMATHGoogle Scholar
  30. 1955 Vandiver, H. S. Is there an infinity of regular primes? Scripta Mathematica, 21, 1955, 306–309.MathSciNetGoogle Scholar
  31. 1964 Siegel, C.L. Zu zwei Bemerkungen Kummers. Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. II, 1964, 51–57. Also in Gesammelte Abhandlungen, vol. III, Springer-Verlag, New York, 1966, 436–442.Google Scholar
  32. 1965 Montgomery, H. L. Distribution of irregular primes. Illinois J. Math., 9, 1965, 553–558.MathSciNetMATHGoogle Scholar
  33. 1967 Selfridge, J. L., and Pollack, B. W. Fermat’s last theorem is true for any exponent up to 25000. Notices Amer. Math. Soc., 11, 1967, 97, Abstract 608–138.Google Scholar
  34. 1970 Kobelev, V. V. Proof of Fermat’s last theorem for all prime exponents less than 5500. Soviet Math Dokl., 11, 1970, 188–190.MATHGoogle Scholar
  35. 1971 Metsänkylä, T. Note on the distribution of irregular primes. Annales Acad. Sci. Fennicae, Ser. A, I, No. 492, 1971, 7 pages.Google Scholar
  36. 1974 Johnson, W. Irregular prime divisors of the Bernoulli numbers. Math. Comp., 28, 1974, 653–657.MathSciNetCrossRefMATHGoogle Scholar
  37. 1975.
    Shanks, D. Letter to Serre (Dec. 3, 1975).Google Scholar
  38. 1975 Yokoi, H. On the distribution of irregular primes. J. Number Theory, 7, 1975, 71–76.MathSciNetCrossRefMATHGoogle Scholar
  39. 1976 Metsänkylä, T. Distribution of irregular prime numbers. J. reine u. angew. Math., 282, 1976, 126–130.MATHGoogle Scholar
  40. 1977 Wagstaff, S. S. The irregular primes to 125000. (Preprint, 1977). Math. Comp., 32, 1978, 583–591.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsJeffery Hall Queen’s UniversityKingstonCanada

Personalised recommendations