Advertisement

The Naïve Approach

  • Paulo Ribenboim

Abstract

In this lecture, I will relate what has been done with Fermat’s problem without using any sophisticated methods. Let me say, that these attempts should not be looked down on. On the contrary, they show much ingenuity, and they have helped to understand the intrinsic difficulties of the problem. I’ll point out, in various cases, how these attempts have brought to light quite a number of other interesting, perhaps more difficult problems than Fermat’s.

Keywords

Trivial Solution Prime Power Naive Approach Nonzero Integer Prime Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1810 Barlow, P. Demonstration of a curious numerical proposition. J. Nat. Phil. Chem. and Arts, 27, 1810, 193–205 (this paper is referred to in Dickson’s History of the Theory of Numbers, vol. 2, 733).Google Scholar
  2. 1811 Barlow, P. An Elementary Investigation of Theory of Numbers, Ed. J. Johnson and Co., St. Paul’s Churchyard, London, 1811, 153–169.Google Scholar
  3. 1823 Abel, N. Extraits de quelques lettres à Holmboe, Copenhague, l’an \(\sqrt[3]{{6064321219}}\) (en comptant la fraction décimale). Oeuvres Complètes, 2nd edition, vol. II, Grondahl, Christiania, 1881, 254–255.Google Scholar
  4. 1823 Legendre, A. M. Recherches sur quelques objets d’analyse indéterminée et particulièrement sur le théorème de Fermat. Mémoires de l’Acad. des Sciences, Institut de France, 6, 1823, 1–60.Google Scholar
  5. 1825 Legendre, A. M. Essai sur la théorie des nombres (2nd supplement) Paris, 1825. Reprinted in Sphinx-Oedipe, 4, 1909, 97–128.Google Scholar
  6. 1837 Kummer, E. E. De aequatione x 2λ + y 2λ = z 2λ per numeros integros resolvenda. J. reine u. angew. Math., 17, 1837, 203–209. Reprinted in Collected Papers, vol. I, edited by A. Weil, Springer-Verlag, Berlin, 1975, 135–142.MATHCrossRefGoogle Scholar
  7. 1839 Cauchy, A. and Liouville, J. Rapport sur un mémoire de M. Lamé relatif au dernier théorème de Fermat. C. R. Acad. Sci. Paris, 9, 1839, 2e sem., 359–363. Reprinted in J. Math. Pures et Appl., 5, 1840, 211–215. Reprinted in Cauchy’s Oeuvres Complètes, I, vol. 4, Gauthier-Villars, Paris, 1911, 499–504.Google Scholar
  8. 1841 Cauchy, A. Exercises d’Analyse et de Physique Mathématique, 2, 1841, 137–144 (notes sur quelques théorèmes d’algèbre). Oeuvres Complètes, II, vol. 12, Gauthier-Villars, Paris, 1916, 157–166.Google Scholar
  9. 1871 Stern, M. A. Einige Bemerkungen uber eine Determinante. J. reine u. angew. Math., 73, 1871, 374–380.MATHCrossRefGoogle Scholar
  10. 1884 Jonquières, E. Sur le dernier théorème de Fermat. Atti Accad. Pont. Nuovi Lincei, 37, 1883/1884, 146–149. Reprinted in Sphinx-Oedipe, 5, 1910, 29–32.Google Scholar
  11. 1891 Lucas, E. Théorie des Nombres, Gauthien-Villans, Paris, 1891. Reprinted by A. Blanchard, Paris, 1961.MATHGoogle Scholar
  12. 1894 Wendt, E. Arithmetischen Studien über den letzten Fermatschen Satz, welcher aussagt dass die Gleichung a n = b n + c n fur n > 2, in ganzen Zahlen nicht auflösbar ist. J. reine u. angew. Math., 113, 1894, 335–346.MATHGoogle Scholar
  13. 1895 Markoff, V. Question 477. L’Interm. des Math., I, 2, 1895, 23.Google Scholar
  14. 1901.
    Bendz, T. R. Öfver diophantiska Ekvationen x n + y n = z n (in Swedish). Almqvist & Wyksells Boktryckeri, Uppsala, 1901, 35 pages.Google Scholar
  15. 1901 Gambioli, D. Memoria bibliográfica sull’ultimo teorema di Fermat. Periodico di Mat., 16, 1901, 145–192.Google Scholar
  16. 1904 Birkhoff, G. D. and Vandiver, H. S. On the integral divisors of a nb n. Annals of Math., (2), 5, 1904, 173–180.MathSciNetCrossRefGoogle Scholar
  17. 1904 Dickson, L. E. A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math., 33, 1904, 155–161.Google Scholar
  18. 1905 Sauer, R. Eine polynomische Verallgemeinerung des Fermatschen Satzes. Dissertation, Giessen, 1905.Google Scholar
  19. 1908 Hurwitz, A. Über die diophantische Gleichung x 3 y + y 3 z + z 3 x = 0. Math. Annalen, 65, 1908, 428–430. Reprinted in Mathematische Werke, vol. II, Birkhäuser, Basel, 1963, 427–429.MathSciNetMATHCrossRefGoogle Scholar
  20. 1909 Dickson, L. E. Lower limit for the number of sets of solutions of x e + y e + z e ≡ 0 (mod p). J. reine u. angew. Math., 135, 1909, 181–188.MATHGoogle Scholar
  21. 1909 Dickson, L. E. On the congruence x n + y n + z n ≡ 0 (mod p). J. reine u. angew. Math., 135, 1909, 134–141.Google Scholar
  22. 1909 Fleck, A. Miszellen zum grossen Fermatschen Problem. Sitzungsber. Berliner Math. Ges., 8, 1909, 133–148.Google Scholar
  23. 1913 Carmichael, R. D. Note on Fermat’s last theorem. Bull. Amer. Math. Soc., 19, 1913, 233–236.MathSciNetMATHCrossRefGoogle Scholar
  24. 1913 Carmichael, R. D. Second note on Fermat’s last theorem. Bull. Amer. Math. Soc., 19, 1913, 402–403.MathSciNetCrossRefGoogle Scholar
  25. 1913 Goldziher, K. Hatvănyszamok Telbontása hatványszamok összegere. Középiskolai Math. Lapok, 21, 1913, 177–184.Google Scholar
  26. 1913 Meissner, W. Über die Teilbarkeit von 2p − 2 durch das Quadrat der Primzahl p = 1093. Sitzungsber Alad. d. Wiss. zu Berlin, 1913, pp. 663–667Google Scholar
  27. 1914 Frobenius, G. Über den Fermatschen Satz, III. Sitzungsber. Akad. d. Wiss. zu Berlin, 1914, 653–681. Reprinted in Collected Works, vol. 3, Springer-Verlag, Berlin, 1968, 648–676.Google Scholar
  28. 1914 Vandiver, H. S. A note on Fermat’s last theorem. Trans. Amer. Math. Soc., 15, 1914, 202–204.MathSciNetGoogle Scholar
  29. 1920 Arwin, A. Über die Lösung der Kongruenz (λ + 1)pλ p − 1 ≡ 0 (mod p 2). Acta Math., 42, 1920, 173–190.MathSciNetCrossRefGoogle Scholar
  30. 1923 Pomey, L. Sur le dernier théorème de Fermat. C. R. Acad. Sci. Paris, 177, 1923, p. 1187–1190.MATHGoogle Scholar
  31. 1925 Vandiver, H. S. A property of cyclotomic integers and its relation to Fermat’s last theorem (2nd paper). Annals of Math., 26, 1925, 217–232.MathSciNetMATHCrossRefGoogle Scholar
  32. 1926 Vandiver, H. S. Note on trinomial congruences and the first case of Fermat’s last theorem. Annals of Math., 27, 1926, 54–56.CrossRefGoogle Scholar
  33. 1929 Spunar, V. M. On Fermat’s last theorem II. J. Washington Acad. Sci., 19, 1929, 395–401.Google Scholar
  34. 1931 Massoutié, L. Sur le dernier théorème de Fermat. C. R. Acad. Sci. Paris, 193, 1931, 502–504.Google Scholar
  35. 1931 Pomey, L. Nouvelles remarques relatives au dernier théorème de Fermat. C. R. Acad. Sci. Paris, 193, 1931, 563–564.Google Scholar
  36. 1932 Mileikowsky, E. N. Elementarer Beitrag zur Fermatschen Vermutung. J. reine u. angew. Math., 166, 1932, 116–117.Google Scholar
  37. 1934 Brauer, A. Review of paper by L. Pomey “Sur le dernier théorème de Fermat (Divisibilité par 3 et par 5)”. Jahrbuch d. Fortschritte der Math., 60, II, 1934, 928.Google Scholar
  38. 1934 James, G. On Fermat’s last theorem. Amer. Math. Monthly, 41, 1934, 419–424.MathSciNetMATHCrossRefGoogle Scholar
  39. 1934 Pomey, L. Sur le dernier théorème de Fermat (divisibilité par 3 et par 5). C. R. Acad. Sci. Paris, 199, 1934, 1562–1564.Google Scholar
  40. 1935 Lehmer, E. On a resultant connected with Fermat’s last theorem. Bull. Amer. Math. Soc., 41, 1935, 864–867.MathSciNetCrossRefGoogle Scholar
  41. 1938 Segal, D. A note on Fermat’s last theorem. Amer. Math. Monthly, 45, 1938, 438–439.MathSciNetCrossRefGoogle Scholar
  42. 1940 Krasner, M. A propos du critère de Sophie Germain—Furtwängler pour le premier cas du théorème de Fermat. Mathematica Cluj, 16, 1940, 109–114.MathSciNetMATHGoogle Scholar
  43. 1943 Niedermeier, F. Ein elementarer Beitrag zur Fermatschen Vermutung. J. reine u. angew. Math., 185, 1943, 111–112.MathSciNetMATHGoogle Scholar
  44. 1946 Inkeri, K. Untersuchungen über die Fermatsche Vermutung. Annales Acad. Sci. Fennicae, Ser. A, I, No. 33, 1946, 60 pages.MathSciNetGoogle Scholar
  45. 1946 Pérez-Cacho, L. Fermat’s last theorem and the Mersenne numbers (in Spanish). Rev. Acad. Ci. Madrid, 40, 1946, 39–57.Google Scholar
  46. 1947 Vivanti, G. Un teorema di aritmetica e la sua relazione colla ipotesi di Fermat. Ist. Lombardo Sei. Lett., Rend. Sci. Mat. Nat. (3), 11 (80), 1947, 239–246.MathSciNetGoogle Scholar
  47. 1950 Trypanis, A. On Fermat’s last theorem. Proc. Int. Congress Math., Cambridge, Mass., 1950, vol. 1, 301–302.Google Scholar
  48. 1951 Dénes, P. An extension of Legendre’s criterion in connection with the first case of Fermat’s last theorem. Publ. Math. Debrecen, 2, 1951, 115–120.MathSciNetMATHGoogle Scholar
  49. 1952 Mihaljinec, M. Prilog Fermatovu Problemu (Une contribution au problème de Fermat). In Serbo-Croatian (French summary). Hrvatsko Prirodoslovno Drustvo. Glasnik Mat. Fiz. Astr., Ser. II, 7, 1952, 12–18.MathSciNetGoogle Scholar
  50. 1953 Griselle, T. Proof of Fermat’s last theorem for n = 2(8a + 1). Math. Magazine, 26, 1953, 263.MathSciNetMATHGoogle Scholar
  51. 1954 Grey, L. D. A note on Fermat’s last theorem. Math. Magazine, 27, 1954, 274–277.MathSciNetMATHCrossRefGoogle Scholar
  52. 1955 Möller, K. Untere Schranke für die Anzahl der Primzahlen, aus denen x, y, z der Fermatschen Geichung x n + y n = z n bestehen muss. Math. Nachr., 14, 1955, 25–28.MathSciNetMATHCrossRefGoogle Scholar
  53. 1956 Oeconomu, G. Sur le premier cas du théorème de Fermat pour les exposants pairs. C. R. Acad. Sci. Paris, 243, 1956, 1588–1591.MathSciNetGoogle Scholar
  54. 1958 Pérez-Cacho, L. On some questions in the theory of numbers (in Spanish). Rev. Mat. Hisp. Amer. (4), 18, 1958, 10–27 and 113–124.MathSciNetGoogle Scholar
  55. 1958 Schinzel, A. and Sierpinski, W. Sur certaines hypothèses concernant les nombres premiers. Remarque. Acta Arithm., 4, 1958, 185–208 and Acta Arithm., 5, 1959, 259.MathSciNetMATHGoogle Scholar
  56. 1959 Carlitz, L. A determinant connected with Fermat’s last theorem. Proc. Amer. Math. Soc., 10, 1959, 686–690.MathSciNetMATHGoogle Scholar
  57. 1960 Carlitz, L. A determinant connected with Fermat’s last theorem, II. Proc. Amer. Math. Soc., 11, 1960, 730–733.MathSciNetMATHGoogle Scholar
  58. 1960 Long, L. A note on Fermat’s theorem. Math. Gaz., 44, 1960, 261–262.MathSciNetMATHCrossRefGoogle Scholar
  59. 1962 Bateman, P. T. and Horn, R. A. A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp., 16, 1962, 363–367.MathSciNetMATHCrossRefGoogle Scholar
  60. 1963 Schinzel, A. A remark on a paper of Bateman and Horn. Math. Comp., 17, 1963, 445–447.MathSciNetMATHCrossRefGoogle Scholar
  61. 1965 Ferentinou-Nicolacopoulou, I. A new necessary condition for the existence of a solution of the equation x p + y p = z p of Fermat (in Greek, French summary). Bull. Soc. Math. Grèce (N.S.), 6, I, 1965, 222–236.MATHGoogle Scholar
  62. 1965 Ferentinou-Nicoiacopoulou, I. Remarks on the article “A new necessary condition for the existence of a solution of the equation x p + y p = z p of Fermat” (in Greek, French summary). Bull. Soc. Math. Grèce, (N.S.), 6, II, 1965, 356–357.Google Scholar
  63. 1969 Rameswar Rao, D. Some theorems on Fermat’s last theorem. Math. Student, 37, 1969, 208–210.MathSciNetGoogle Scholar
  64. 1969 Swistak, J. M. A note on Fermat’s last theorem. Amer. Math. Monthly, 76, 1969, 173–174.MathSciNetMATHCrossRefGoogle Scholar
  65. 1970 Klösgen, W. Untersuchungen über Fermatsche Kongruenzen. Gesells. f. Math. und Datenverarbeitung, No. 36, 124 pages, 1970, Bonn.Google Scholar
  66. 1973 Vaughan, R. C. A remark on the divisor function d(n). Glasgow Math. J.., 14, 1973, 54–55.MathSciNetMATHCrossRefGoogle Scholar
  67. 1975 Everett, C. J. and Metropolis, N. On the roots of Xm ± 1 in the p-adic field Qp. Notices Amer. Math. Soc., 22, 1975, A-619. Preprint LA-UR-74–1835 Los Alamos Sci. Lab., Los Alamos, New Mexico.Google Scholar
  68. 1975.
    Wagstaff, S. S. Letter to W. Johnson (unpublished).Google Scholar
  69. 1976.
    Gandhi, J. M. On the first case of Fermat’s last theorem. To appear.Google Scholar
  70. 1977 Johnson, W. On congruences related to the first case of Fermat’s last theorem. Math. Comp., 31, 1977, 519–526.MathSciNetMATHGoogle Scholar
  71. 1977 Terjanian, G. Sur l’équation x 2p + y 2p = z 2p . C. R. Acad. Sci. Paris, 285, 1977, 973–975.MathSciNetMATHGoogle Scholar
  72. 1978 Chowla, S. L-series and elliptic curves, part 4: On Fermat’s last theorem. Number Theory Day. Springer Lect. Notes, No. 626, 1978, 19–24. Springer-Verlag, New York, 1978.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsJeffery Hall Queen’s UniversityKingstonCanada

Personalised recommendations