B.K. = Before Kummer

  • Paulo Ribenboim


In this lecture, I wish to report various early attempts to solve Fermat’s problem. I begin by considering the case of exponent 2, which is much earlier than Fermat’s time. As Zassenhaus kindly pointed out to me, 2 is the oddest of the primes. Among its special properties, this oddest of all the primes is even; it is also the only exponent for which it is known that the Fermat equation has a nontrivial solution.


Prime Element Great Common Divisor Nonzero Integer Prime Integer General Polynomial Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1760/1 Euler, L. Supplementum quorundam theorematum arithmeticorum quae in nonnullis demonstrationibus supponuntur. Novi Comm. Acad. Sci. Petrop., 8, (1760/1) 1763, 105–128. Also in Opera Omnia, Ser. I, vol. II, 556–575. Teubner, Leipzig-Berlin, 1915.Google Scholar
  2. 1770 Euler, L. Vollständige Anleitung zur Algebra, Royal Acad. of Sciences, St. Petersburg, 1770. Translated into English 1822, Longman, Hurst, Rees, Orme & Co., London (see pages 449–454). See also Opera Omnia, Ser. I, Vol. I, Teubner, Leipzig-Berlin, 1915, 484–489.Google Scholar
  3. 1808 Legendre, A. M. Essais sur la Théorie des Nombres (2e édition), Courcier, Paris, 1808.Google Scholar
  4. 1823 Legendre, A. M. Sur quelques objets d’analyse indéterminée et particulièrement sur le théorème de Fermat. Mém. de l’Acad. des Sciences, Institut de France, 6, 1823, 1–60.Google Scholar
  5. 1825 Legendre, A. M. Essais sur la théorie des nombres, 1825 (2nd supplement). Reprinted by Sphinx-Oedipe, 4, 1909, 97–128.Google Scholar
  6. 1828 Dirichlet, G. L. Mémoire sur l’impossibilité de quelques équations indéterminées du 5e degré. J. reine u. angew Math., 3, 1828, 354–375.MATHCrossRefGoogle Scholar
  7. 1830 Legendre, A. M. Théorie des Nombres, 3e édition, vol. II, Firmin Didot Frères, Paris, 1830. Reprinted by A. Blanchard, Paris, 1955.Google Scholar
  8. 1832 Dirichlet, G. L. Démonstration du théorème de Fermat pour les 14e puissances. J. reine u. angew. Math., 9, 1832, 390–393.MATHCrossRefGoogle Scholar
  9. 1839 Lamé, G. Mémoire sur le dernier théorème de Fermat. C. R. Acad. Sci. Paris, 9, 1839, 45–46.Google Scholar
  10. 1839.
    Cauchy, A. and Liouville, J. Rapport sur un mémoire de M. Lamé relatif au dernier théorème de Fermat. C. R. Acad. Sci. Paris, 9, 1839.Google Scholar
  11. Also appeared in Cauchy, A. and Liouville, J. Rapport sur un mémoire de M. Lamé relatif au dernier théorème de Fermat. J. Math. Pures et Appl., 5, 1840, 211–215.Google Scholar
  12. 1840 Lamé, G. Mémoire d’analyse indéterminée démontrant que l’equation x 7 + y 7 = z 7 est impossible en nombres entiers. J. Math. Pures et Appl, 5, 1840, 195–211.Google Scholar
  13. 1840 Lebesgue, V. A. Démonstration de l’impossibilité de résoudre l’équation x 7 + y 7 + z 7 = 0 en nombres entiers. J. Math. Pures et Appl, 5, 1840, 276–279.Google Scholar
  14. 1840 Lebesgue, V. A. Addition à la note sur l’équation x 7 + y 7 + z 7 = 0. J. Math. Pures et Appl, 5, 1840, 348–349.Google Scholar
  15. 1847 Lamé, G. Mémoire sur la résolution en nombres complexes de l’equation A 5 + B 5 + C 5 = 0. J. Math. Pures et Appl, 12, 1847, 137–171.Google Scholar
  16. 1876.
    Gauss, C. F. Collected Works, vol. II. Königlichen Ges. d. Wiss., Göttingen, 1876, 387–391.Google Scholar
  17. 1894 Schumacher, J. Nachtrag zu Nr. 1077, XXIII, 269. Zeitschrift Math. Naturw. Unterricht, 25, 1894, 350.Google Scholar
  18. 1901 Landau, E. Sur une démonstration d’Euler d’un théorème de Fermat. L’Interm. des Math., 8, 1901, 145–147.Google Scholar
  19. 1906 Holden, H. On the complete solution in integers for certain values of p, of a(a 2 + pb 2) = c(c 2 + pd 2). Messenger of Math., 36, 1906, 189–192.Google Scholar
  20. 1910 Welsch Réponse à une question de E. Dubouis. L’Interm. des Math., 17, 1910, 179–180.Google Scholar
  21. 1915 Carmichael, R. D. Diophantine Analysis, Wiley, New York, 1915.MATHGoogle Scholar
  22. 1938 Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1938 (reprinted 1968).Google Scholar
  23. 1962 Sierpinski, W. Pythagorean Triangles, Yeshiva Univ., New York, 1962.MATHGoogle Scholar
  24. 1966 Grosswald, E. Topics from the Theory of Numbers, Macmillan, New York, 1966.MATHGoogle Scholar
  25. 1966 Bergmann, G. Über Eulers Beweis des grossen Fermatschen Satzes für den Exponenten 3. Math. Ann. 164, 1966, 159–175.MathSciNetMATHCrossRefGoogle Scholar
  26. 1968 Shanks, D. Solved and Unsolved Problems in Number Theory, I, Spartan, Washington, 1962. Reprinted by Chelsea Publ. Co., New York, 1979.Google Scholar
  27. 1969 Mordell, L. J. Diophantine Equations, Academic Press, New York, 1969.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsJeffery Hall Queen’s UniversityKingstonCanada

Personalised recommendations