Advertisement

Abstract

In the preceding lectures, I have always mentioned the efforts of mathematicians to prove Fermat’s last theorem.

Keywords

Algebraic Number Diophantine Equation Diophantine Approximation Prime Integer Hypo Thesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1844.
    Catalan, E. Note extraite d’une lettre adressée à F éditeur. J. reine u. angew. Math., 27, 1844, 192.MATHCrossRefGoogle Scholar
  2. 1850.
    Lebesgue, V. A. Sur l’impossibilité en nombres entiers de l’équation x m = y 2 + 1. Nouv. Ann. de Math., 9 1850, 178–181.Google Scholar
  3. 1856.
    Grünert, J. A. Wenn n > 1, so gibt es unter den ganzen Zahlen von 1 bis n nicht zwei Werte von x und y, für welche, wenn z einen ganzen Wert bezeichnet, x n + y n = z n ist. Archiv Math. Phys., 27, 1856, 119–120.Google Scholar
  4. 1892.
    Zsigmondy, K. Zur Theorie der Potenzreste. Monatsh. f. Math., 3, 1892, 265–284.MathSciNetCrossRefGoogle Scholar
  5. 1904.
    Birkhoff, G. D. and Vandiver, H. S. On the integral divisors of a nb n . Annals of Math., (2), 5, 1904, 173–180.MathSciNetCrossRefGoogle Scholar
  6. 1909.
    Thue, A. Über Annäherungswerte algebraische Zahlen. Journal reine u. angew. Math., 135, 1909, 284–305.MATHGoogle Scholar
  7. 1921.
    Nagell, T. Des équations indéterminées x 2 + x + 1 = y n et x 2 + x + 1 = 3y n. Norske Mat. Forenings Skrifter, 1921, No. 2, 11–14.Google Scholar
  8. 1926a.
    Siegel, C. L. The integer solutions of the equation y 2 = ax n + bx n −1 + • • • + k (extract from a letter to Prof. L. J. Mordell). J. London Math. Soc., 1, 1926, 66–68.MATHCrossRefGoogle Scholar
  9. 1926b.
    Siegel, C. L. The integer solutions of the equation y 2 = ax n + bx n −1 + • • • + k (extract from a letter to Prof. L. J. Mordell) Also in Gesammelte Abhandlungen, vol. I, Springer-Verlag, Berlin, 1966, 207–208.Google Scholar
  10. 1929a.
    Siegel, C. L. Über einige Anwendungen diophantischer Approximationen. Abhandl. Preuss. Akad. Wiss., No. 1, 1929.Google Scholar
  11. 1929b.
    Siegel, C. L. Über einige Anwendungen diophantischer Approximationen, Reprinted in Gesammelte Abhandlungen, vol. I, Springer-Verlag, Berlin, 1966, 209–266.Google Scholar
  12. 1931.
    Morishima, T. Über den Fermatschen Quotienten. Jpn. J. Math., 8, 1931, 159–173.MATHGoogle Scholar
  13. 1932.
    Seiberg, S. Sur l’impossibilité de l’équation indéterminée z p + 1 = y 2 . Norske Mat. Tidskrift, 14, 1932, 79–80.Google Scholar
  14. 1934.
    James, G. On Fermat’s last theorem. Amer. Math. Monthly, 41, 1934, 419–424.MathSciNetMATHCrossRefGoogle Scholar
  15. 1939.
    Rosser, J. B. On the first case of Fermat’s last theorem. Bull. Amer. Math. Soc. 45, 1939, 636–640.MathSciNetCrossRefGoogle Scholar
  16. 1940.
    Lehmer, D. H. The lattice points of an n-dimensional tetrahedron. Duke M. J., 7, 1940, 341–353.MathSciNetMATHCrossRefGoogle Scholar
  17. 1940.
    Rosser, J. B. A new lower bound for the exponent in the first case of Fermat’s last theorem. Bull. Amer. Math. Soc. 46, 1940, 299–304.MathSciNetCrossRefGoogle Scholar
  18. 1941.
    Lehmer, D. H. and Lehmer, E. On the first case of Fermat’s last theorem. Bull. Amer. Math. Soc., 47, 1941, 139–142.MathSciNetCrossRefGoogle Scholar
  19. 1941.
    Rosser, J. B. An additional criterion for the first case of Fermat’s last theorem. Bull. Amer. Math. Soc., 47, 1941, 109–110.MathSciNetCrossRefGoogle Scholar
  20. 1946.
    Inkeri, K. Untersuchungen über die Fermatsche Vermutung. Annales Acad. Sci. Fennicae, ser. A, I, 1946, 33, 1–60.Google Scholar
  21. 1948.
    Gunderson, N. G. Derivation of Criteria for the First Case of Fermat’s Last Theorem and the Combination of these Criteria to Produce a New Lower Bound for the Exponent. Thesis, Cornell University, 1948.Google Scholar
  22. 1951.
    Turan, P. A note on Fermat’s conjecture. J. Indian Math. Soc., 15, 1951, 47–50.MathSciNetMATHGoogle Scholar
  23. 1952.
    LeVeque, W. J. On the equation a xb y = 1. Amer. J. Math., 74, 1952, 325–331.MathSciNetMATHCrossRefGoogle Scholar
  24. 1953.
    Cassels, J, W. S. On the equation a x − b y = 1. Amer. J. Math., 75, 1953, 159–162.MathSciNetMATHCrossRefGoogle Scholar
  25. 1953.
    Inkeri, K. Abschätzungen für eventuelle Lösungen der Gleichung im Fermatschen Problem. Ann. Univ. Turku, Ser. A, 1953, No. 1, 3–9.Google Scholar
  26. 1955.
    Dénes, P. and Turán, P. A second note on Fermat’s conjecture. Publ. Math. Debrecen. 4, 1955, 28–32.MathSciNetMATHGoogle Scholar
  27. 1955.
    Roth, K. F. Rational approximation to algebraic numbers. Mathematika, 2, 1955, 1–20. Corrigendum, page 168.MathSciNetCrossRefGoogle Scholar
  28. 1956.
    LeVeque, W. J. Topics in Number Theory, vol. II. Addison-Wesley, Reading, Mass., 1956.Google Scholar
  29. 1961.
    Casseis, J. W. S. On the equation a xb y = 1, II. Proc. Cambridge Phil Soc. 56, 1961, 97–103.CrossRefGoogle Scholar
  30. 1964.
    Chao Ko On the diophantine equation x 2 = y n + 1, xy ≠ 0. Sciencia Sinica (Notes), 14, 1964, 457–460.Google Scholar
  31. 1964.
    Inkeri, K. and Hyyrö, S. Über die Anzahl der Lösungen einiger Diophantischer Gleichungen. Annales Univ. Turku, Ser. A, 1964, No. 78, 3–10.Google Scholar
  32. 1966.
    Baker, A. Linear forms in logarithms of algebraic numbers, I. Mathematika, 13, 1966, 204–216.CrossRefGoogle Scholar
  33. 1968.
    Baker, A. The diophantine equation y 2 = x 3 + k. Phil. Trans. R. Soc. London, 263, 1968, 193–208.MATHCrossRefGoogle Scholar
  34. 1969.
    Perisastri, M. On Fermat’s last theorem. Amer. Math. Monthly, 76, 1969, 671–675.MathSciNetMATHCrossRefGoogle Scholar
  35. 1971.
    Brillhart, J., Tonascia, J., and Weinberger, P. On the Fermat quotient, in Computers in Number Theory, Academic Press, New York, 1971, 213–222.Google Scholar
  36. 1975.
    Baker, A. Transcendental Number Theory, Cambridge University Press, London, 1975.MATHCrossRefGoogle Scholar
  37. 1975.
    Langevin, M. Sur la fonction plus grand facteur premier. Sém. Delange-Pisot-Poitou, 16e année. 1974/5, G 22, 29 pages. Inst. Henri Poincaré, Paris, 1975.Google Scholar
  38. 1976.
    Schinzel, A. and Tijdeman, R. On the equation y m = P(x). Acta Arith., 31, 1976, 199–204.MathSciNetGoogle Scholar
  39. 1976.
    Tijdeman, R. On the equation of Catalan. Acta Arith., 29, 1976, 197–209.MathSciNetGoogle Scholar
  40. 1977.
    Baker, A. The theory of linear forms in logarithms, in Transcendence Theory, Advances and Applications, Academic Press, New York, 1977, 1–27.Google Scholar
  41. 1977.
    Inkeri, K. and van der Poorten, A. J. Some remarks on Fermat’s conjecture. (To appear).Google Scholar
  42. 1977.
    Stewart, C. L. A note on the Fermat equation. Mathematika, 24, 1977, 130–132.MathSciNetMATHCrossRefGoogle Scholar
  43. 1977.
    van der Poorten, A. J. and Loxton, J. H. Multiplicative relations in number fields. Bull. Austr. Math. Soc., 16, 1977, 83–98.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Paulo Ribenboim
    • 1
  1. 1.Department of Mathematics and StatisticsJeffery Hall Queen’s UniversityKingstonCanada

Personalised recommendations