Equilibrium Solutions of Evolution Problems

  • Gérard Iooss
  • Daniel D. Joseph
Part of the Undergraduate Texts in Mathematics book series (UTM)


We are going to study equilibrium solutions of evolution equations of the form
$$ \frac{{dU}}{{dt}} = F\left( {t,\mu ,U} \right), $$
where t ≥ 0 is the time and µ is a parameter which lies on the real line − ∞ < µ < ∞.


Periodic Solution Equilibrium Solution Equilibrium Distribution Local Form Evolution Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, V. I. Complements on the Theory of Ordinary Differential Equations. Moscow: Nauka, 1978 (in Russian).Google Scholar
  2. Amann, H., Bazley, N., Kirchgâssner, K. Applications of Nonlinear Analysis in the Physical Science. Boston-London Melbourne: Pitman, 1981.Google Scholar
  3. Gurel O., and Rossler, O., eds. Bifurcation theory and its applications in scientific disciplines. Annals of the New York Academy of Sciences , 316, 1979.Google Scholar
  4. Haken, H., ed. Synergetics. Berlin-Heidelberg-New York: Springer-Verlag, 1977.Google Scholar
  5. Iooss, G. Bifurcation of Maps and Applications. Lecture Notes, Mathematical Studies. Amsterdam: North-Holland, 1979.Google Scholar
  6. Joseph, D. D., Stability of Fluid Motions, land II. Springer Tracts in Natural Philosophy. Vol. 27 and 28. Berlin-Heidelberg-New York: Springer-Verlag, 1976.CrossRefGoogle Scholar
  7. Keller, J. and Antman, S., eds. Bifurcation Theory and Nonlinear Eigenvalue Problems. New York: W. A. Benjamin, 1969.MATHGoogle Scholar
  8. Krasnosel’ski, M. A., Topological Methods in the Theory of Nonlinear Integral Equations. New York: Macmillan, 1964.Google Scholar
  9. Marsden, J. and McCracken, M. The Hopf Bifurcation and Its Applications. Lecture notes in Applied Mathematical Sciences, Vol. 18. Berlin-Heidelberg-New York: Springer-Verlag, 1976.CrossRefGoogle Scholar
  10. Pimbley, G. H. Eigenfunction Branches of Nonlinear Operators and Their Bifurcations. Lecture Notes in Mathematics No. 104. Berlin-Heidelberg-New York: Springer- Verlag, 1969.Google Scholar
  11. Rabinowitz, P., ed. Applications of Bifurcation Theory. New York: Academic Press, 1977.MATHGoogle Scholar
  12. Sattinger, D. H. Topics in Stability and Bifurcation Theory. Lecture Notes in Mathematics No. 309. Berlin-Heidelberg-New York: Springer-Verlag, 1972.Google Scholar
  13. Sattinger, D. H. Group Theoretic Methods in Bifurcation Theory. Lecture Notes in Mathematics No. 762. Berlin-Heidelberg-New York, Springer-Verlag 1980.Google Scholar
  14. Stakgold, I. Branching of solutions of nonlinear equations. SIAM Review B, 289 (1971).Google Scholar
  15. Vainberg, M. M., and Trenogin, V. A., The methods of Lyapunov and Schmidt in the theory of nonlinear equations and their further development. Russ. Math. Surveys 17 (2): 1 (1962).MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Gérard Iooss
    • 1
  • Daniel D. Joseph
    • 2
  1. 1.Faculté des Sciences, Institut des Mathématiques et Sciences PhysiquesUniversité des NiceParc Valrose, NiceFrance
  2. 2.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations