Bifurcation of Forced T-Periodic Solutions into Asymptotically Quasi-Periodic Solutions

  • Gérard Iooss
  • Daniel D. Joseph
Part of the Undergraduate Texts in Mathematics book series (UTM)


In Chapter IX we determined the conditions under which subharmonic solutions, nT-periodic solutions with integers n > 1, could bifurcate from forced T-periodic solutions.


Periodic Solution Closed Curve Rotation Number Strong Resonance Floquet Multiplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. I. Arnold, Loss of stability of self-oscillations close to resonance and versai deformations of equivariant vector fields, Funk. Anal. Ego. Prilog. 11, 1–10 (1977).CrossRefGoogle Scholar
  2. J. Neimark, On some cases of periodic motions depending on parameters, Dokl. Akad. Nauk. SSR, 736–739 (1959).Google Scholar
  3. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris 1892 (see §§37, 38).Google Scholar
  4. D. Ruelle and F. Takens, On the nature of turbulence, Com. Math. Phys. 20, 167–192 (1971).Google Scholar
  5. R. J. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, New York Univ. IMM-NYU 333 (1964).Google Scholar
  6. Y. H. Wan, Bifurcation into invariant tori at points of resonance, Arch. Rational Mech. Anal. 68, 343–357 (1978).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • Gérard Iooss
    • 1
  • Daniel D. Joseph
    • 2
  1. 1.Faculté des Sciences, Institut des Mathématiques et Sciences PhysiquesUniversité des NiceParc Valrose, NiceFrance
  2. 2.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations