Partial Isometries

  • Paul R. Halmos
Part of the Graduate Texts in Mathematics book series (GTM, volume 19)


Normal operators constitute the most important tractable class of operators known; the most important statement about them is the spectral theorem. Students of operator theory generally agree that the finite-dimensional version of the spectral theorem has to do with diagonal forms. (Every finite normal matrix is unitarily equivalent to a diagonal one.) The general version, applicable to infinite-dimensional spaces, does not have a universally accepted formulation. Sometimes bounded operator representations of function algebras play the central role, and sometimes Stieltjes integrals with unorthodox multiplicative properties. There is a short, simple, and powerful statement that does not attain maximal generality (it applies to only one operator at a time, not to algebras of operators), but that does have all classical formulations of the spectral theorem as easy corollaries, and that has the advantage of being a straightforward generalization of the familiar statement about diagonal forms. That statement will be called the spectral theorem in what follows; it says that every normal operator is unitarily equivalent to a multiplication. The statement can be proved by exactly the same techniques as are usually needed for the spectral theorem; see [56], [40, pp. 911–912].


Hilbert Space Functional Calculus Hermitian Operator Cardinal Number Partial Isometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Paul R. Halmos

There are no affiliations available

Personalised recommendations