Norm Topology

  • Paul R. Halmos
Part of the Graduate Texts in Mathematics book series (GTM, volume 19)


If the distance between two operators A and B is defined to be ‖AB‖, the set B(H) of all operators on a Hilbert space H becomes a metric space. Some of the standard metric and topological questions about that space have more interesting answers than others. Thus, for instance, it is not more than minimum courtesy to ask whether or not the space is complete. The answer is yes. The proof is the kind of routine analysis every mathematician has to work through at least once in his life; it offers no surprises. The result, incidentally, has been tacitly used already. In Solution 86, the convergence of the series Σ n=0 A n was inferred from the assumption ‖A‖ < 1. The alert reader should have noted that the justification of this inference is in the completeness result just mentioned. (It takes less alertness to notice that the very concept of convergence refers to some topology.)


Hilbert Space Conjugate Class Spectral Radius Algebraic Operation Invertible Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Paul R. Halmos

There are no affiliations available

Personalised recommendations