• Edwin H. Spanier


the reader of this book is assumed to have a grasp of the elementary concepts of set theory, general topology, and algebra. Following are brief summaries of some concepts and results in these areas which are used in this book. Those listed explicitly are done so either because they may not be exactly standard or because they are of particular importance in the subsequent text.


Topological Space Convex Body Free Module General Topology Hausdorff Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Some Books on Algebraic Topology

  1. Alexandroff, P. and H. Hopf: Topologie, Springer-Verlag, 1935.Google Scholar
  2. Bott, R. and L. W. Tu:Differential Foniis in Algebraic Topology, Springer-Verlag, 1982Google Scholar
  3. Bourgin, D.G.: Modern Algebraic Topology, Macmillan, 1963.Google Scholar
  4. Bredon, G.E.: Sheaf Theory, McGraw-Hill, 1967.MATHGoogle Scholar
  5. Cairns, S.S.: Introductory Topology, Ronald Press, 1962.Google Scholar
  6. Dold, A.: Lectures on Algebraic Topology, Springer-Verlag, 1980.MATHGoogle Scholar
  7. Eilenberg, S. and N.E. Steenrod: Foundations of Algebraic Topology, Princeton University Press, 1952.MATHGoogle Scholar
  8. Godement, R.: Topologie algébrique et théorie des faisceaux, Hermann and Cie, 1958.MATHGoogle Scholar
  9. Gray, B.: Homotopy Theory, An Introduction to Algebraic Topology, Academic Press, 1975.MATHGoogle Scholar
  10. Greenberg, MJ. and J.R. Harper: Algebraic Topology, A First Course Benjamin/Cummings, 1981.MATHGoogle Scholar
  11. Hilton, P.J. and S. Wylie: Homology Theory, Cambridge University Press, 1960.MATHCrossRefGoogle Scholar
  12. Hocking, J.G. and G.S. Young: Topology, Addison-Wesley, 1961.MATHGoogle Scholar
  13. Hu, S.T.:Homotopy Theory, Academic Press, 1959.MATHGoogle Scholar
  14. Lefschetz, S.: Algebraic Topology, American Math Society, 1942.MATHGoogle Scholar
  15. Lefschetz, S.: Introduction to Topology, Princeton Univ. Press, 1949.MATHGoogle Scholar
  16. Massey, W.S.: Algebraic Topology, An Introduction, Harcourt, Brace and World, 1967.MATHGoogle Scholar
  17. Massey, W.S.: Homology and Cohomology Theory, An Approach Based on Alexander-Spanier Cochains, Dekker, 1978.MATHGoogle Scholar
  18. Massey, W.S.: Singular Homology Theory, Springer-Verlag, 1980.MATHGoogle Scholar
  19. Maunder, C.R.F.: Algebraic Topology, Cambridge Univ. Press, 1980.MATHGoogle Scholar
  20. Munkres, J.R.: Elements of Algebraic Topology, Addison-Wesley, 1984.MATHGoogle Scholar
  21. Pontryagin, L.S.: Foundations of Combinational Topology, Graylock Press, 1952.Google Scholar
  22. Schubert H.: Topologie, Teubner Verlagsgesellschaft, 1964.MATHGoogle Scholar
  23. Seifert, H. and W. Threlfall: Lehrbuch der Topologie, Teubner Verlagsgesellschaft, 1934.Google Scholar
  24. Steenrod, N.E.: The Topology of Fiber Bundles, Princeton University Press, 1951.Google Scholar
  25. Switzer, R.M.: Algebraic Topology—Homotopy and Homology, Springer-Verlag, 1975.MATHGoogle Scholar
  26. Vick, J.W.: Homology Theory, An Introduction to Algebraic Topology, Academic Press, 1973.MATHGoogle Scholar
  27. Wallace, A.H.: An Introduction to Algebraic Topology, Pergamon Press, 1957.MATHGoogle Scholar
  28. Wallace, A.H.: Algebraic Topology, Homology and Cohomology, Benjamin, 1970.MATHGoogle Scholar
  29. Wilder, R.L.: Topology of Manifolds, American Math Society, 1949.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1966

Authors and Affiliations

  • Edwin H. Spanier
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations