Advertisement

Numerical Inversion of Laplace Transforms

  • Brian Davies
Part of the Texts in Applied Mathematics book series (TAM, volume 41)

Abstract

There are many problems whose solution may be found in terms of a Laplace or Fourier transform, which is then too complicated for inversion using the techniques of complex analysis. In this chapter, we discuss some of the methods that have been developed—and in some cases are still being developed—for the numerical evaluation of the inverse.

Keywords

Truncation Error Chebyshev Polynomial Laplace Transform Discretization Error Exponential Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, J.M. Varah, SIAM Review, 21 (1979), 100;MathSciNetMATHCrossRefGoogle Scholar
  2. J.M. Varah, SIAM J. Sei. Stat. Comp., 4 (1983), 164;MathSciNetMATHCrossRefGoogle Scholar
  3. M. Iqbal, J. Comp. AppL Math., 59 (1995), 145.MathSciNetMATHCrossRefGoogle Scholar
  4. 2.
    B. Davies and B. Martin, J. Comp. Phys, 33 (1979), 1MathSciNetMATHCrossRefGoogle Scholar
  5. 3.
    D.G. Duffy, ACM Trans. Math. Software, 19 (1993), 333MATHCrossRefGoogle Scholar
  6. 5.
    D.R Gaver, Operations Research, 14 (1966), 444MathSciNetCrossRefGoogle Scholar
  7. 6.
    H. Stehfest, Comm. ACM, 13 (1970), 47.CrossRefGoogle Scholar
  8. 9.
    G. Giunta, G. Laccetti, and M.R. Rizzardi, Numer. Math., 54 (1988), 193. These formulae are correct for all values of R except R = 1, for which C(R) degenerates to the straight line Re(p) = a.MathSciNetMATHCrossRefGoogle Scholar
  9. 10.
    The following material is taken from G. Giunta, A. Murli, and C. Schmid, Numer. Math., 69 (1995), 269.MathSciNetMATHCrossRefGoogle Scholar
  10. 12.
    R. Piessens, J. Inst Math. Apps, 10 (1972), 185. Note that we have replaced the constant b therein by 26, so as to maintain uniformity with our notation.MATHCrossRefGoogle Scholar
  11. 13.
    R. Piessens, Comp. J, 25 (1982), 278MATHCrossRefGoogle Scholar
  12. 16.
    Tricomi, R.C. Acad. Nat dei Lincei, 21 (1935), 232Google Scholar
  13. D.V. Widder, Duke Math. J., 1 (1935), 126MathSciNetMATHCrossRefGoogle Scholar
  14. 17.
    W.T. Weeks, J. ACM., 13 (1966), 419MathSciNetMATHCrossRefGoogle Scholar
  15. 18.
    R. Piessens and M. Branders, Proc. lEE., 118 (1971), 1517.MathSciNetGoogle Scholar
  16. 19.
    A Lyness and G. Giunta, Math. Comp., 47 (1986), 313.MathSciNetMATHCrossRefGoogle Scholar
  17. 20.
    J.A.C. Weideman, SIAM J. Sei. Comp., 21 (1999), 111MathSciNetMATHCrossRefGoogle Scholar
  18. 21.
    B.S. Garbow, G. Giunta, J.N. Lyness, and A. Murli, ACM Trans. Math. Software, 14 (1988), 163,MathSciNetMATHCrossRefGoogle Scholar
  19. B.S. Garbow, G. Giunta, J.N. Lyness, and A. Murli, ACM Trans. Math. Software, 14 (1988), 171CrossRefGoogle Scholar
  20. 23.
    A Durbin, Comp. J., 17 (1974), 371MathSciNetMATHGoogle Scholar
  21. 24.
    G. Honig and U. Hirdes, J. Comp, and Appl Maths., 10 (1984), 113MathSciNetMATHCrossRefGoogle Scholar
  22. 27.
    This section is adapted from F.R. de Hoog, J.H. Knight, and A.N. Stokes, SIAM J. Sei. Stat Comp., 3 (1982), 357.MATHCrossRefGoogle Scholar
  23. 28.
    L. d’Amore, G. Laccetti, and A. Murli, ACM Trans. Math. Software, 25 (1999), 279.MATHCrossRefGoogle Scholar
  24. 30.
    A. Talbot, J. Inst. App. Maths. 23 (1979), 97MathSciNetMATHCrossRefGoogle Scholar
  25. 31.
    A. Murli and M. Rizzardi, ACM Trans. Math. Software, 16(1990), 158.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2002

Authors and Affiliations

  • Brian Davies
    • 1
  1. 1.Mathematics Department, School of Mathematical SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations