Boundary Behavior

  • Klaus Fritzsche
  • Hans Grauert
Part of the Graduate Texts in Mathematics book series (GTM, volume 213)


Assume that X is an n-dimensionalcomplex manifold that carries a (real analytic) Kähler metric \(d{s^2} = \sum {{g_{ij}}d{z_i}d{{\bar z}_j}}\), where the gij are real analytic functions of the local coordinates z1,...,zn. We consider a domain Ω ⊂⊂ X whose boundary Ω is C-smooth and strictly Levi convex. In this chapter such a domain is called strongly pseudoconvex.


Complex Manifold Neumann Problem Chern Class Pseudoconvex Domain Boundary Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 2002

Authors and Affiliations

  • Klaus Fritzsche
    • 1
  • Hans Grauert
    • 2
  1. 1.Bergische Universität WuppertalWuppertalGermany
  2. 2.Mathematisches InstitutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations