Stein Theory

  • Klaus Fritzsche
  • Hans Grauert
Part of the Graduate Texts in Mathematics book series (GTM, volume 213)


A complex manifold X is called holomorphically spreadable if for any point x0X there are holomorphic functions f1,…, f N on X such that x0 is isolated in the set
$$ N\left( {{f_1}, \ldots, {f_N}} \right) = \left\{ {x \in X\;:\;{f_1}(x) = \cdots = {f_N}(x) = 0} \right\}. $$


Line Bundle Holomorphic Function Complex Manifold Plurisubharmonic Function Holomorphic Vector Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 2002

Authors and Affiliations

  • Klaus Fritzsche
    • 1
  • Hans Grauert
    • 2
  1. 1.Bergische Universität WuppertalWuppertalGermany
  2. 2.Mathematisches InstitutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations