Stein Theory

  • Klaus Fritzsche
  • Hans Grauert
Part of the Graduate Texts in Mathematics book series (GTM, volume 213)


A complex manifold X is called holomorphically spreadable if for any point x0X there are holomorphic functions f1,…, f N on X such that x0 is isolated in the set
$$ N\left( {{f_1}, \ldots, {f_N}} \right) = \left\{ {x \in X\;:\;{f_1}(x) = \cdots = {f_N}(x) = 0} \right\}. $$


Line Bundle Holomorphic Function Complex Manifold Plurisubharmonic Function Holomorphic Vector Bundle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 2002

Authors and Affiliations

  • Klaus Fritzsche
    • 1
  • Hans Grauert
    • 2
  1. 1.Bergische Universität WuppertalWuppertalGermany
  2. 2.Mathematisches InstitutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations