Skip to main content

Power Management in a Hydro-Thermal System under Uncertainty by Lagrangian Relaxation

  • Conference paper
Decision Making Under Uncertainty

Abstract

We present a dynamic multistage stochastic programming model for the cost-optimal generation of electric power in a hydro-thermal system under uncertainty in load, inflow to reservoirs and prices for fuel and delivery contracts. The stochastic load process is approximated by a scenario tree obtained by adapting a SARIMA model to historical data, using empirical means and variances of simulated scenarios to construct an initial tree, and reducing it by a scenario deletion procedure based on a suitable probability distance. Our model involves many mixed-integer variables and individual power unit constraints, but relatively few coupling constraints. Hence we employ stochastic Lagrangian relaxation that assigns stochastic multipliers to the coupling constraints. Solving the Lagrangian dual by a proximal bundle method leads to successive decomposition into single thermal and hydro unit subproblems that are solved by dynamic programming and a specialized descent algorithm, respectively. The optimal stochastic multipliers are used in Lagrangian heuristics to construct approximately optimal first stage decisions. Numerical results are presented for realistic data from a German power utility, with a time horizon of one week and scenario numbers ranging from 5 to 100. The corresponding optimization problems have up to 200,000 binary and 350,000 continuous variables, and more than 500,000 constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Bacaud, C. Lemaréchal, A. Renaud, and C. Sagastizábal, Bundle methods in stochastic optimal power management: A disaggregated approach using preconditioners, Comput. Optim. Appl. To appear.

    Google Scholar 

  2. D. Bertsekas, G.S. Lauer, N.R. Sandell, and T.A. Posberg, Optimal short-term scheduling of large-scale power systems, IEEE Trans. Automat. Control, AC-28 (1983), pp. 1–11.

    Article  Google Scholar 

  3. J.R. Birge, Stochastic programming computation and applications, INFORMS J. Comput., 9 (1997), pp. 111–133.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, New York, 1997.

    MATH  Google Scholar 

  5. P.J. Brockwell and R.A. Davies, Introduction to Time Series and Forecasting, Springer, New York, 1996.

    MATH  Google Scholar 

  6. C.C. Carøe and R. Schultz, A two-stage stochastic program for unit commitment under uncertainty in a hydro-thermal power system, Preprint 98–13, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, Germany, 1998.

    Google Scholar 

  7. C.C. Carøe and R. Schultz—, Dual decomposition in stochastic integer programming, Oper. Res. Lett., 24 (1999), pp. 37–45.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Carpentier, G. Cohen, and J.-C. Culioli, Stochastic optimal control and decomposition-coordination methods, part II: Application, in Recent Developments in Optimization, R. Durier and C. Michelot, eds., Lecture Notes in Economics and Mathematical Systems 429, Springer-Verlag, Berlin, 1995, pp. 88–103.

    Chapter  Google Scholar 

  9. P. Carpentier, G. Cohen, J.-C. Culioli, and A. Renaud, Stochastic optimization of unit commitment: A new decomposition framework, IEEE Trans. Power Systems, 11 (1996), pp. 1067–1073.

    Article  Google Scholar 

  10. G. Consigli and M.A.H. Dempster, Dynamic stochastic programming for asset-liability management, Ann. Oper. Res., 81 (1998), pp. 131–161.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Dentcheva and W. Römisch, Optimal power generation under uncertainty via stochastic programming, in Stochastic Programming Methods and Technical Applications, K. Marti and P. Kall, eds., Lecture Notes in Economics and Mathematical Systems 458, Springer-Verlag, Berlin, 1998, pp. 22–56.

    Google Scholar 

  12. J. Dupačová, Scenario-based stochastic programs: Resistance with respect to sample, Ann. Oper. Res., 64 (1996), pp. 21–38.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Dupačová—, Portfolio optimization via stochastic programming: Methods of output analysis, Math. Methods Oper. Res., 50 (1999), pp. 245–270.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Dupačová, G. Consigli, and S.W. Wallace, Scenarios for multistage stochastic programs, Ann. Oper. Res. To appear.

    Google Scholar 

  15. J. Dupačová, N. Gröwe-Kuska, and W. Römisch, Scenario reduction in stochastic programming: An approach using probability metrics, Preprint 00–09, Institut für Mathematik, Humboldt-Univ. Berlin, Berlin, Germany, 2000.

    Google Scholar 

  16. J. Dupačová and W. Römisch, Quantitative stability of scenario-based stochastic programs, in Prague Stochastics ’98, M. Hušková, P. Lachout, and J. Á. Višek, eds., JCMF, Prague, 1998, pp. 119–124.

    Google Scholar 

  17. N.C.P. Edirisinghe, Bound-based approximations in multistage stochastic programming: Nonanticipativity aggregation, Ann. Oper. Res., 85 (1999), pp. 173–192.

    Article  MathSciNet  Google Scholar 

  18. S. Feltenmark and K.C. Kiwiel, Dual applications of proximal bundle methods, including Lagrangian relaxation of nonconvex problems, SIAM J. Optim., 10 (2000), pp. 697–721.

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Fiedler and W. Römisch, Stability in multistage stochastic programming, Ann. Oper. Res., 56 (1995), pp. 79–93.

    Article  MathSciNet  MATH  Google Scholar 

  20. S.-E. Fleten, S.W. Wallace, and W.T. Ziemba, Portfolio management in a deregulated hydropower-based electricity market, in Hydropower ’97, E. Broch, D. K. Lysne, N. Flatabø, and E. Helland-Hansen, eds., Balkema, Rotterdam, 1997, pp. 197–204.

    Google Scholar 

  21. K. Frauendorfer, Barycentric scenario trees in convex multistage stochastic programming, Math. Programming, 75 (1996), pp. 277–293.

    MathSciNet  MATH  Google Scholar 

  22. A. Gjelsvik, T.A. Røtting, and J. Røynstrand, Long-term scheduling of hydrothermal power systems, in Hydropower ’92, E. Broch and D.K. Lysne, eds., Balkema, Rotterdam, 1992, pp. 539–546.

    Google Scholar 

  23. R. Gollmer, A. Möller, W. Römisch, R. Schultz, G. Schwarzbach, and J. Thomas, Optimale Blockauswahl bei der Kraftwerkseinsatzplanung der VEAG, in Optimierung in der Energieversorgung II, VDI-Berichte 1352, VDI, Düsseldorf, 1997, pp. 71–85.

    Google Scholar 

  24. N. Gröwe, W. Römisch, and R. Schultz, A simple recourse model for power dispatch under uncertain demand, Ann. Oper. Res., 59 (1995), pp. 135–164.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Gröwe-Kuska, M.P. Nowak, and I. Wegner, Modelling of uncertainty for the real-time management of power systems, tech. rep., Institut für Mathematik, Humboldt-Univ. Berlin, Berlin, Germany, 2001.

    Google Scholar 

  26. J.L. Higle and S. Sen, Stochastic Decomposition; A Statistical Method for Large Scale Stochastic Linear Programming, Kluwer, Dordrecht, 1996.

    MATH  Google Scholar 

  27. Statistical approximations for stochastic linear programming problems, Ann. Oper. Res., 85 (1998), pp. 173–192.

    Article  MathSciNet  Google Scholar 

  28. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, Springer, Berlin, 1993.

    Google Scholar 

  29. K. Høyland and S.W. Wallace, Generating scenario trees for multi-stage decision problems, Management Sci. To appear.

    Google Scholar 

  30. G. Infanger, Monte Carlo (importance) sampling within a Bender’s decomposition for stochastic linear programs, Ann. Oper. Res., 39 (1992), pp. 69–95.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Jacobs, G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus, and J. Stedinger, SOCRATES: A system for scheduling hydroelectric generation under uncertainty, Ann. Oper. Res., 59 (1995), pp. 99–133.

    Article  MathSciNet  MATH  Google Scholar 

  32. K.C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Math. Programming, 46 (1990), pp. 105–122.

    Article  MathSciNet  MATH  Google Scholar 

  33. —, Exact penalty functions in proximal bundle methods for constrained convex nondifferentiable minimization, Math. Programming, 52 (1991), pp. 285–302.

    Article  MathSciNet  MATH  Google Scholar 

  34. —, A Cholesky dual method for proximal piecewise linear programming, Numer. Math., 68 (1994), pp. 325–340.

    Article  MathSciNet  MATH  Google Scholar 

  35. —, User’s guide for NOA 3.0: A Fortran package for convex nondifferentiable optimization, tech. rep., Systems Research Institute, Warsaw, 1994.

    Google Scholar 

  36. C. Lemaréchal, Lagrangian decomposition and nonsmooth optimization: Bundle algorithm, prox iteration, augmented Lagrangian, in Nonsmooth Optimization, Methods and Applications, F. Giannessi, ed., Gordon and Breach, Philadelphia, 1992, pp. 201–216.

    Google Scholar 

  37. C. Lemaréchal and A. Renaud, A geometric study of duality gaps, with applications, Math. Programming. To appear.

    Google Scholar 

  38. A. Løkketangen and D.L. Woodruff, Progressive hedging and tobu search applied to mixed integer (0,1) multi-stage stochastic programming, J. Heuristics, 2 (1996), pp.111–128.

    Article  Google Scholar 

  39. A.C. Miller and T.R. Rice, Discrete approximations of probability distributions, Management Sci., 29 (1983), pp. 352–362.

    Article  MATH  Google Scholar 

  40. V.I. Norkin, G. Ch. Pflug, and A. Ruszczyński, A branch and bound method for stochastic global optimization, Math. Programming, 83 (1998), pp. 425–450.

    MathSciNet  MATH  Google Scholar 

  41. M.P. Nowak, A fast descent method for the hydro storage subproblem in power generation, WP-96–109, International Institute for Applied Systems Analysis, Laxenburg, Austria, 1996.

    Google Scholar 

  42. Stochastic Lagrangian Relaxation in Power Scheduling of a Hydro-Thermal System Under Uncertainty, PhD thesis, Institut für Mathematik, Humboldt-Univ. Berlin, Berlin, Germany, 2000.

    Google Scholar 

  43. M.P. Nowak and W. Römisch, Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty, Ann. Oper. Res. To appear.

    Google Scholar 

  44. M.V.F. Pereira and L.M.V.G. Pinto, Multi-stage stochastic optimization applied to energy planning, Math. Programming, 52 (1991), pp. 359–375.

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Ch. Pflug, Scenario tree generation for multiperiod financial optimization by optimal discretization, Math. Programming, 89 (2001), pp. 251–271.

    Article  MathSciNet  MATH  Google Scholar 

  46. S.T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, Chichester, 1991.

    MATH  Google Scholar 

  47. S.T. Rachev and W. Römisch, Quantitative stability in stochastic programming: The method of probability metrics, Preprint 00–22, Institut für Mathematik, Humboldt-Univ. Berlin, Berlin, Germany, 2000.

    Google Scholar 

  48. A. Renaud, Optimizing short-term operation of power generation: A new stochastic model. Lecture presented at the VIII International Conference on Stochastic Programming, Vancouver (Canada), Aug. 1998.

    Google Scholar 

  49. R.T. Rockafellar and R.J.-B. Wets, The optimal recourse problem in discrete time: L 1 -multipliers for inequality constraints, SIAM J. Control Optim., 16 (1978), pp. 16–36.

    Article  MathSciNet  MATH  Google Scholar 

  50. —, Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res., 16 (1991), pp. 119–147.

    Article  MathSciNet  MATH  Google Scholar 

  51. W. Römisch and R. Schultz, Decomposition of a multi-stage stochastic program for power dispatch, Z. Angew. Math. Mech., 76 (1996), pp. 29–32. Suppl. 3.

    MATH  Google Scholar 

  52. A. Ruszczyński, Decomposition methods in stochastic programming, Math. Programming, 79 (1997), pp. 333–353.

    MathSciNet  MATH  Google Scholar 

  53. G.B. Sheblé and G.N. Fahd, Unit commitment literature synopsis, IEEE Trans. Power Systems, 9 (1994), pp. 128–135.

    Article  Google Scholar 

  54. S. Takriti, J.R. Birge, and E. Long, A stochastic model for the unit commitment problem, IEEE Trans. Power Systems, 11 (1996), pp. 1497–1508.

    Article  Google Scholar 

  55. S. Takriti, B. Krasenbrink, and L.S.-Y. Wu, Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem, Oper. Res., 48 (2000), pp. 268–280.

    Article  Google Scholar 

  56. P.P.J. van den Bosch and F.A. Lootsma, Scheduling of power generation via large-scale nonlinear optimization, J. Optim. Theory Appl., 55 (1987), pp. 313–326.

    Article  MathSciNet  MATH  Google Scholar 

  57. R.J.-B. Wets, Stochastic programming, in Optimization, G.L. Nemhauser, A.H.G. Rinnooy-Kan, and M.J. Todd, eds., Vol. 1 of Handbooks in Operations Research and Management Science, North-Holland, Amsterdam, 1989, pp. 573–629.

    Google Scholar 

  58. Wolfram Research, Mathematica Time Series Pack: Reference and User’s Guide, Champaign, IL, 1995.

    Google Scholar 

  59. A.J. Wood and B.F. Wollenberg, Power Generation, Operation, and Control, Wiley, New York, second ed., 1996.

    Google Scholar 

  60. S.A. Zenios and M.S. Shtilman, Constructing optimal samples from a binomial lattice, J. Inform. Optim. Sci., 14 (1993), pp. 125–147.

    MathSciNet  MATH  Google Scholar 

  61. G. Zhuang and F.D. Galiana, Towards a more rigorous and practical unit commitment by Lagrangian relaxation, IEEE Trans. Power Systems, 3 (1988), pp. 763–773.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Gröwe-Kuska, N., Kiwiel, K.C., Nowak, M.P., Römisch, W., Wegner, I. (2002). Power Management in a Hydro-Thermal System under Uncertainty by Lagrangian Relaxation. In: Greengard, C., Ruszczynski, A. (eds) Decision Making Under Uncertainty. The IMA Volumes in Mathematics and its Applications, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-9256-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9256-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3014-9

  • Online ISBN: 978-1-4684-9256-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics