Multistage Hepatocarcinogenesis in the Rat as a Basis for Models of Risk Assessment of Carcinogenesis

  • Henry C. Pitot
  • Mark J. Neveu
  • James R. Hully
  • Tahir A. Rizvi
  • Harold Campbell


Although biological processes are, in general, far more complex than chemical and physical phenomena, one goal of biology, toxicology, and pathology is the mathematical-statistical formulation of models that describe the mechanisms of normal and disease processes. However, as pointed out by several scientists (Whittemore, 1978; Moolgavkar, 1986; Alavanja et al., 1987), up to this time no mathematical-statistical model of a biological process has faithfully described all of the particulars of the biological phenomenon under consideration. This is especially true in the field of carcinogenesis (cf. Chu, 1987) where many models have been proposed in the past. With any model, however, its formulation is dependent on the level of knowledge of the biological mechanisms controlling the process, i.e., carcinogenesis. Recent advances in our understanding of the mechanisms of carcinogenesis as a multistage process have allowed, at least potentially, for a closer congruence between models representative of carcinogenesis and their pathogenesis.


Partial Hepatectomy Multistage Nature Estradiol Benzoate Multistage Carcinogenesis Close Congruence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. ALAVANJA, J. ARON, C. BROWN and J. CHANDLER. Cancer risk-assessment models: anticipated contributions from biochemical epidemiology. J. Natl. Cancer Inst., 78, (1987), pp. 633–643.Google Scholar
  2. B. N. AMES, L. S. GOLD, C. B. SAWYER and W. HAVENDER. Carcinogenic Potency. In Environmental Mutagens and Carcinogens. T. Sugimura, S. Kondo, and H. Takebe (eds.). University of Tokyo Press, Tokyo, (1982), pp. 663–670.Google Scholar
  3. P. ARMITAGE and R. DOLL. The age distribution of cancer and a multi-stage theory of carcinogenesis. Brit. J. Cancer, 8, (1954), pp. 1–12.CrossRefGoogle Scholar
  4. R. K. BOUTWELL. The function and mechanism of promoters of carcinogenesis. CRC Crit. Rev. Toxicol., 2, (1974), pp. 419–443.CrossRefGoogle Scholar
  5. A. R. BUCKLEY, C. W. PUTNAM and D. H. RUSSELL. Prolactin is a tumor promoter in rat liver. Life Sci., 37, (1985), pp. 2569–2575.CrossRefGoogle Scholar
  6. W. BURSCH, B. LAUER, I. TIMMERMANN-TROSIENER, G. BARTHEL, J. SCHUPPLER and R. SCHULTE-HERMANN. Controlled death (apoptosis) of normal and putative preneoplastic cells in rat liver following withdrawal of tumor promoters. Carcinogenesis, 5, (1984), pp. 453–458.CrossRefGoogle Scholar
  7. K. C. CHU. A nonmathematical view of mathematical models for cancer. J. Chron. Dis., 40, (1987), pp. 163S-170S.CrossRefGoogle Scholar
  8. T. L. DAO and P.-C. CHAN. Hormones and dietary fat as promoters in mammary arcinogenesis. Environ. Health Persp., 50, (1983), pp. 219–225.CrossRefGoogle Scholar
  9. S. S. DEVESA, D. T. SILVERMAN, J. L. YOUNG JR., E. S. POLLACK, C. C. BROWN, J. W. HORM, C. L. PERCY, M. H. MYERS, F. W. MCKAY and J. F. FRAUMENI JR. Cancer incidence and mortality trends among whites in the United States, 1947–84. J. Natl. Cancer Inst., 79, (1987), pp. 701–770.Google Scholar
  10. L. DOCK, M. MARTINEZ and B. JERNSTRÖM. Induction of hepatic glutathione S-transferase activity by buty-lated hydroxyanisole and conjugation of benzo[a] pyrene diol-epoxide. Carcinogenesis, 5, (1984), pp. 841–844.CrossRefGoogle Scholar
  11. F. DOLJANSKI. The growth of the liver with special reference to mammals. Int. Rev. Cytol., 10, (1960), pp. 217–241.Google Scholar
  12. H. E. DRIVER and A. E. M. MCLEAN. Dose-response relationship for phenobarbitone promotion of liver tumours initiated by single dose dimethylnitrosamine. Br. J. Exp. Path., 67, (1986), pp. 131–139.Google Scholar
  13. P. EMMELOT and E. SCHERER. The first relevant cell stage in rat liver carcinogenesis. A quantitative approach. Biochim. Biophys. Acta, 605, (1980), pp. 247–304.Google Scholar
  14. J. I. FABRIKANT. The kinetics of cellular proliferation in regenerating liver. J. Cell Biol., 36, (1968), pp. 551–565.CrossRefGoogle Scholar
  15. E. FARBER and R. CAMERON. The sequential analysis of cancer development. Adv. Cancer Res., 31, (1980), pp. 125–226.CrossRefGoogle Scholar
  16. L. FOULDS. The experimental study of tumor progression: a review. Cancer Res., 14, (1954), pp. 327–339.Google Scholar
  17. L. FOULDS. Multiple etiologic factors in neoplastic development. Cancer Res., 25, (1965), pp. 1339–1347.Google Scholar
  18. D. W. GAYLOR and R. E. SHAPIRO. Extrapolation and risk estimation for carcinogenesis. In Advances in Modern Toxicology, Vol. 1, Part 2, New Concepts in Safety Evaluation, M. A. Mehlman, R. E. Shapiro, and H. Blumenthal, (eds.). John Wiley & Sons, New York, (1979).Google Scholar
  19. T. GOLDSWORTHY, H. A. CAMPBELL and H. C. PITOT. The natural history and dose-response characteristics of enzyme-altered foci in rat liver following phenobarbital and diethylnitrosamine administration. Carcinogenesis, 5, (1984), pp. 67–71.CrossRefGoogle Scholar
  20. B. HANES and T. WEDEL. A selected review of risk models: one hit, multihit, multistage, probit, Weibull, and pharmacokinetic. J. Amer. Coll. Toxicol., 4, (1985), pp. 271–278.CrossRefGoogle Scholar
  21. M. HANIGAN and H. C. PITOT. Growth of carcinogen-altered rat hepatocytes in the liver of syngeneic recipients promoted with phenobarbital. Cancer Res., 45, (1985), pp. 6063–6070.Google Scholar
  22. S. HENDRICH, H. P. GLAUERT and H. C. PITOT. The phenotypic stability of altered hepatic foci: effects of withdrawal and subsequent readministration of phenobarbital. Carcinogenesis, 7, (1986), pp. 2041–2045.CrossRefGoogle Scholar
  23. S. HENDRICH, H. P. GLAUERT and H. C. PITOT. Dietary effects on initiation and promotion of hepatocar-cinogenesis in the rat. J. Cancer Res. Clin. Oncol., 114, (1988), pp. 149–157.CrossRefGoogle Scholar
  24. H. HENNINGS, R. SHORES, P. MITCHELL, E. F. SPANGLER and S. H. YUSPA. Induction of papillomas with a high probability of conversion to malignancy. Carcinogenesis, 6, (1985), pp. 1607–1610.CrossRefGoogle Scholar
  25. N. HIROTA and T. YOKOYAMA. Comparative study of abnormality in glycogen storing capacity and other histo-chemical phenotypic changes in carcinogen-induced hepatocellular preneoplastic lesions in rats. Acta Pathol. Jpn., 35(5), (1985), pp. 1163–1179.Google Scholar
  26. T. ISHIKAWA, S. TAKAYAMA and T. KITAGAWA. Correlation between time of partial hepatectomy after a single treatment with diethylnitrosamine and induction of adenosinetriphosphatase-deficient islands in rat liver. Cancer Res., 40, (1980), pp. 4261–4264.Google Scholar
  27. H. IVERSEN. Tpa (12′0-tetradecanoyl-phorbol-13-acetate) as a carcinogen for mouse skin. Virchows Arch [Cell Pathol], 49, (1985), pp. 129–135.CrossRefGoogle Scholar
  28. T. KITAGAWA, R. WATANABE and H. SUGANO. Induction of glutamyl transpeptidase activity by dietary phenobarbital in “spontaneous” hepatic tumors of C3H mice. Gann, 71, (1980), pp. 536–542.Google Scholar
  29. R. J. KOCIBA, D. G. KEYS, J. E. BEYER, R. M. CARREON, C. E. WADE, D. A. DITTENBER, R. P. KALNINS, L. E. FRAUSON, C. N. PARK, S. D. BARNARD, R. A. HUMMEL and C. G. HUMISTON. Results of a two-year chronic toxicity and oncogenicity study of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxiñ in rats. Toxicol. Appl. Pharmacol., 46, (1978), pp. 279–303.CrossRefGoogle Scholar
  30. Y. KURATA, H. TSUDA, S. TAMANO and N. ITO. Inhibitory potential of acetaminophen and o-, m-, p-aminophenols for development of y-glutamyltranspeptidase-positive liver cell foci in rats pretreated with diethylnitros-amine. Cancer Lett., 28, (1985), pp. 19–25.CrossRefGoogle Scholar
  31. G.-H. LEE, N. SAWADA, Y. MOCHIZUKI, K. NOMURA and T. KITAGAWA. Immortal epithelial cells of normal C3H mouse liver in culture: possible precursor populations for spontaneous hepatocellular carcinoma. Cancer Res., 49, (1989), pp. 403–409.Google Scholar
  32. S. H. MOOLGAVKAR. Carcinogenesis modeling: from molecular biology to epidemiology. Annu. Rev. Public Health, 7, (1986), pp. 151–169.CrossRefGoogle Scholar
  33. S. H. MOOLGAVKAR, A. DEWANGI and D. J. VENZON. A stochastic two-stage model for cancer risk assessment. I. The hazard function and the probability of tumor. Risk Anal., 8, (1988), pp. 383–392.CrossRefGoogle Scholar
  34. S. H. MOOLGAVKAR and A. G. KNUDSON JR. Mutation and cancer: A model for human carcinogenesis. J. Natl. Cancer Inst., 66, (1981), pp. 1037–1052.Google Scholar
  35. M. A. MOORE, K. NAKAGAWA, K. SATOH, T. ISHIKAWA and K. SATO. Single GST-P positive liver cells — putative initiated hepatocytes. Carcinogenesis, 8, (1987), pp. 483–486.CrossRefGoogle Scholar
  36. H. J. MULLER. Radiation damage to the genetic material. Sci. in Prog., 7, (1951), p. 130.Google Scholar
  37. C. O. NORDLING. A new theory on the cancer inducing mechanism. Br. J. Cancer, 7, (1953), pp. 68–72.CrossRefGoogle Scholar
  38. P. C. NOWELL and H. P. MORRIS. Chromosomes of “minimal deviation” hepatomas: a further report on diploid tumors. Cancer Res., 29, (1969), pp. 969–970.Google Scholar
  39. K. OGAWA, T. ONOE and M. TAKEUCHI. Spontaneous occurrence of gamma-glutamyl transpeptidase-positive hepatocytic foci in 105-week-old Wistar and 72-week-old Fischer 344 male rats. J. Natl. Cancer Inst., 67, (1981), pp. 407–412.Google Scholar
  40. A. E. PEGG and B. BALOG. Formation and subsequent excision of 0 6-ethylguanine from DNA of rat liver following administration of diethylnitrosamine. Cancer Res., 39, (1979), pp. 5003–5009.Google Scholar
  41. H. C. Pitot. Drugs as promoters of carcinogenesis. The Induction of Drug Metabolism Symposium, Ashford Castle, Ireland, May 24–27, 1978.R. W. Estabrook and E. Lindenlaub, (eds.), p. 471. FK Schattauer Verlag, Stuttgart-New York, (1979).Google Scholar
  42. H. C. PITOT. Characterization of the stage of progression in hepatocarcinogenesis in the rat. In Boundaries between Promotion and Progression, O. Sudilovsky, L. Liotta, and H. C. Pitot (Eds.), Plenum Press, 1989.Google Scholar
  43. H. C. PITOT, L. BARSNESS, T. GOLDSWORTHY, et al. Biochemical characterization of stages of hepatocarcinogenesis after a single dose of diethylnitrosamine. Nature (Lond.), 271, (1978), pp. 456–458.CrossRefGoogle Scholar
  44. H. C. PITOT, L. E. GROSSO and T. GOLDSWORTHY. Genetics and epigenetics of neoplasia: facts and theories. Carcinogenesis, 10, (1985), pp. 65–79.Google Scholar
  45. H. C. PITOT, T. L. GOLDSWORTHY, S. MORAN, W. KENNAN, H. P. GLAUERT, R. R. MARONPOT and H. A. CAMPBELL. A method to quantitate the relative initiating and promoting potencies of hepatocarcinogenic agents in their dose-response relationships to altered hepatic foci. Carcinogenesis, 8, (1987), pp. 1491–1499.CrossRefGoogle Scholar
  46. H. C. PITOT, D. BEER and S. HENDRICH. Multistage carcinogenesis: the phenomenon underlying the theories. In Theories of Carcinogenesis, O. Iversen, (ed.), pp. 159–177. Hemisphere Press, (1988).Google Scholar
  47. M. POLLARD, P. H. LUCKERT and R. A. ADAMS. Detection of gamma glutamyl transpeptidase in the livers of germ-free and conventional rats. Lab. Animal Sci., 32, (1982), pp. 147–149.Google Scholar
  48. J. A. POPP, B. H. SCORTICHINI and L. K. GARVEY. Quantitative evaluation of hepatic foci of cellular alteration occurring spontaneously in Fischer-344 rats. Fund. Appl. Toxicol., 5, (1985), pp. 314–319.CrossRefGoogle Scholar
  49. V. R. POTTER. A new protocol and its rationale for the study of initiation and promotion of carcinogens in rat liver. Carcinogenesis, 2, (1981), pp. 1375–1379.CrossRefGoogle Scholar
  50. T. A. RIZVI, W. KENNAN, Y.-H. XU and H. C. PITOT. The effects of dose and duration of administration on the promotion index of phenobarbital in multistage hepatocarcinogenesis in the rat. Acta Pathol. Microbiol. Immunol., 96, (1988), pp. 262–268.Google Scholar
  51. L. ROSSI, M. RAVERA, G. REPETTI and L. SANTI. Long-term administration of DDT or phenobarbital-Na in Wistar rats. Int. J. Cancer, 19, (1977), pp. 179–185.CrossRefGoogle Scholar
  52. L. SARGENT, Y.-H. XU, G. L. SATTLER, L. MEISNER and H. C. PITOT. Ploidy and karyotype of hepatocytes isolated from enzyme-altered foci in two different protocols of multistage hepatocarcinogenesis in the rat. Carcinogenesis, 10, (1989), pp. 387–391.CrossRefGoogle Scholar
  53. E. SCHERER. Neoplastic progression in experimental hepatocarcinogenesis. Biochim. Biophys. Acta, 738, (1984), pp. 219–236.Google Scholar
  54. E. SCHERER. Relationship among histochemically distinguishable early lesions in multistep-multistage hepatocarcinogenesis. Arch. Toxicol. Suppl., 10, (1987), pp. 81–94.CrossRefGoogle Scholar
  55. R. SCHULTE-HERMANN. Tumor promotion in the liver. Arch. Toxicol., 57, (1985), pp. 147–158.CrossRefGoogle Scholar
  56. R. SCHULTE-HERMANN, I. TIMMERMANN-TROSIENER and J. SCHUPPLER. Promotion of spontaneous preneoplastic cells in rat liver as a possible explanation of tumor production by nonmutagenic compounds. Cancer Res., 43, (1983), pp. 839–844.Google Scholar
  57. J. D. SCRIBNER and R. SÜSS. Tumor initiation and promotion. Int. Rev. Exp. Pathol., 18, (1978), pp. 137–197.Google Scholar
  58. A. E. SIRICA, J. K. JICINSKY and E. K. HEYER. Effect of chronic phenobarbital administration on the gamma-glutamyl transpeptidase activity of hyperplastic liver lesions induced in rats by the Solt/Farber initiation: selection process of hepatocarcinogenesis. Carcinogenesis, 5, (1984), pp. 1737–1740.CrossRefGoogle Scholar
  59. T. J. SLAGA. Overview of tumor promotion in animals. Environ. Health Persp., 50, (1983), pp. 3–14.CrossRefGoogle Scholar
  60. J. A. SWENBERG, F. L. RICHARDSON, J. A. BOUCHERON, F. H. DEAL, S.A. BELINSKY, M. CHARBONNEAU and B. G. SHORT. High to low-dose extrapolation; critical determinants involved in the dose response of carcinogenic substances. Environ. Health Perspect., 76, (1987), pp. 57–63.CrossRefGoogle Scholar
  61. H. S. TAPER. The effect of estradiol-17-phenylpropionate and estradiol benzoate on N-nitrosomorpholine-induced liver carcinogenesis in ovariectomized female rats. Cancer, 42, (1978), pp. 462–467.CrossRefGoogle Scholar
  62. H. TSUDA, T. MASUI, K. IMAIDA, S. FUKUSHIMA and N. ITO. Promotive effect of primary and secondary bile acids on the induction of glutamyl transpeptidase-positive liver cell foci as a possible endogenous factor for hepatocarcinogenesis in rats. Gann, 75, (1984), pp. 871–875.Google Scholar
  63. H. URA, A. DENDA, Y. YOKOSE, M. TSUTSUMI and Y. KONISHI. Effect of vitamin E on the induction and evolution of enzyme-altered foci in the liver of rats treated with diethylnitrosamine. Carcinogenesis, 8, (1987), pp. 1595–1600.CrossRefGoogle Scholar
  64. A. K. VERMA and R. K. BOUTWELL. Effects of dose and duration of treatment with the tumor-promoting agent, 12-O-tetradecanoylphorbol-13-acetate on mouse skin carcinogenesis. Carcinogenesis, 1, (1980), pp. 271–276.CrossRefGoogle Scholar
  65. I. R. WANLESS and A. MEDLINE. Role of estrogens as promoters of hepatic neoplasia. Lab. Invest., 46, (1982), pp. 313–320.Google Scholar
  66. J. M. WARD. Background data and variations in tumor rates of control rats and mice. Progr. Exp. Tumor Res., 2 6, (1983), pp. 241–258.Google Scholar
  67. G. P. WARWICK. Effect of the cell cycle on carcinogenesis. Fed. Proc., 30, (1971), pp. 1760–1765.Google Scholar
  68. L. W. WATTENBERG. Inhibition of chemical carcinogenesis. J. Natl. Cancer Inst., 60, (1978), pp. 11–18.Google Scholar
  69. A. S. WHITTEMORE. Quantitative theories of oncogenesis. Adv. Cancer Res., 27, (1978), pp. 55–88.CrossRefGoogle Scholar
  70. G. M. WILLIAMS. Modulation of chemical carcinogenesis by xenobiotics. Fund. Appl. Toxicol., 4, (1984), pp. 325–344.CrossRefGoogle Scholar
  71. T. S. YING, K. ENOMOTO, D. S. R. SARMA and E. FARBER. Effects of delays in the cell cycle on the induction of preneoplastic and neoplastic lesions in rat liver by 1, 2-dimethylhydrazine. Cancer Res., 42, (1982), pp. 876–880.Google Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Henry C. Pitot
  • Mark J. Neveu
  • James R. Hully
  • Tahir A. Rizvi
  • Harold Campbell

There are no affiliations available

Personalised recommendations