Genetic Alterations During Carcinogenesis in Rodents: Implications for Cancer Risk Assessment

  • Roger W. Wiseman


Recent advances in the molecular genetics of cancer in humans and experimental rodents provide strong support for the somatic mutation theory of carcinogenesis. It is now known that at least two distinct classes of genes, proto-oncogenes and tumor suppressor genes, are altered in cancer cells. A number of tumor types frequently contain ras proto-oncogenes that have been activated by a point mutation. Losses of heterozygosity in specific chromosomal regions which are detected by the analysis of restriction fragment length polymorphisms suggest the involvement of tumor suppressor genes in a wide variety of human cancers. This review discusses results from a series of studies that have characterized activating ras mutations in spontaneous and chemically induced liver and lung tumors of mice and rats. Initial results from the application of restriction fragment length polymorphism analysis for tumor suppressor gene identification in liver and lung tumors of B6C3F1 mice are also presented.


Lung Tumor Cancer Risk Assessment Restriction Fragment Length Polymorphism B6C3F1 Mouse Ethyl Carbamate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almoguera, C., D. Shibata, K. Forrester, J. Martin, N. Arnheim, and M. Perucho. Most human carcinomas of the exocrine pancreas contain mutant C-K-ras genes. Cell 53: 549–554, 1988.CrossRefGoogle Scholar
  2. 2.
    Baker, S.J., E.R. Fearon, J. M. Nigro, S.R. Hamilton, A.C. Preisinger, J. M. Jessup, P. Vantuinen, D. H. Ledbetter, D.F. Barker, Y. Nakamura, R. White, and B. Vogelstein. Chromosome 17 deletions and p5 3 gene mutations in colorectal carcinomas. Science 244: 217–221, 1989.CrossRefGoogle Scholar
  3. 3.
    Balmain, A. and K. Brown. Oncogene activation in chemical carcinogenesis. Adv. Cancer Res. 51: 147–182, 1988.CrossRefGoogle Scholar
  4. 4.
    Barbacid, M. Ras oncogenes. Annu. Rev. Biochem.56: 779–827, 1987.CrossRefGoogle Scholar
  5. 5.
    Barrett, J.C. and R.W. Wiseman. Cellular and molecu-lar mechanisms of multistep carcinogenesis: relevance to carcinogen risk assessment. Environ. Health Perspect. 76: 65–70, 1987.CrossRefGoogle Scholar
  6. 6.
    Bishop, J.M. The molecular genetics of cancer. Science 235: 303–311, 1987.CrossRefGoogle Scholar
  7. 7.
    Bos, J. L. Ras oncogenes in human cancer: a review. Cancer Res. 49: 4682–4689, 1989.Google Scholar
  8. 8.
    Bos, J. L., E.R. Fearon, S.R. Hamilton, M.V. de Vries, J.H. van Boom, A. J. van der Eb, and B. Vogelstein. Prevalence of ras gene mutations in human colorectal cancers. Nature (London) 327: 293–297, 1987.CrossRefGoogle Scholar
  9. 9.
    Buchmann, A., J. Mahr, R. Bauer-Hofmann, and M. Schwarz. Mutations at condon 61 of the Ha-ras proto-oncogene in precancerous liver lesions of the B6C3F1 mouse. Molec. Carcinogen. 2: 121–125, 1989.CrossRefGoogle Scholar
  10. 10.
    Cavenee, W. K., T. P. Dryja, R. A. Phillips, W.F. Benedict, R. Godbout, B. L. Gallie, A. L. Murphree, L. C. Strong, and R.L. White. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature (London) 305: 779–784, 1983.CrossRefGoogle Scholar
  11. 11.
    Cavenee, W. K., A. Koufos, and M. F. Hansen. Recessivemutant genes predisposing to human cancer. Mutat. Res. 168: 3–14, 1986.Google Scholar
  12. 12.
    Doniger, J., V. Notario, and J. A. DiPaolo. Carcinogens with diverse mutagenic activities initiate neoplastic guinea pig cells that acquire the same N-ras point mutation. J. Biol. Chem. 262: 3813–3819, 1987.Google Scholar
  13. 13.
    DuBridge, R. B., P. Tang, H.C. Hsia, P-M. Leong, J. H. Miller, and M. P. Calos. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7: 379–387, 1987.Google Scholar
  14. 14.
    Eisenstadt, E., A.J. Warren, J. Porter, D. Atkins, and J.H. Miller. Carcinogenic epoxides of benzo[a]pyrene and cyclopenta[cd]pyrene induce base substitutions via specific transversions. Proc. Natl. Acad. Sci. USA 79: 1945–1949, 1982.CrossRefGoogle Scholar
  15. 15.
    Elliott, R. DNA restriction fragment variants. Mouse News Lett. 83: 126–148, 1989.Google Scholar
  16. 16.
    Finlay, C. A., P.W. Hinds, and A.J. Levine. The p53 proto-oncogene can act as a suppressor transformation. Cell 57: 1083–1093, 1989.CrossRefGoogle Scholar
  17. 17.
    Forrester, K., C. Almoguera, K. Han, W.E. Grizzle, and M. Perucho. Detection of high incidence of K-ras oncogenes during human colon tumorigene-sis. Nature (London) 327: 298–303, 1987.CrossRefGoogle Scholar
  18. 18.
    Frankel, W. N., J. P. Stoye, B. A. Taylor, and J.M. Coffin. Genetic analysis of endogenous xenotro-pic murine leukemia viruses: association with two common mouse mutations and the viral restriction locus Fv-1. J. Virol. 63: 1763–1774, 1989.Google Scholar
  19. 19.
    Frankel, W. N., J. P. Stoye, B. A. Taylor, and J. M. Coffin. Genetic identification of endogeneous polytropic proviruses by using recombinant inbred mice. J. Virol. 63: 3810–3821, 1989.Google Scholar
  20. 20.
    Gilmer, T.M., L.A. Annab, and J. C. Barrett. Characterization of activated proto-oncogenes in chemically transformed Syrian hamster embryo cells. Mol. Carcinogen. 1: 180–188, 1988.CrossRefGoogle Scholar
  21. 21.
    Goyette, M., M. Dolan, W. Kaufmann, D. Kaufman, P.R. Shank, and N. Fausto. Transforming activity of DNA from rat liver tumors induced by the carcinogen methyl (acetoxymethyl) nitrosamine. Mol. Carcinogen. 1: 26–32, 1988.CrossRefGoogle Scholar
  22. 22.
    Hanahan, D. Dissecting multistep tumorigenesis in transgenic mice. Annu. Rev. Genet. 22: 479–519, 1988.CrossRefGoogle Scholar
  23. 23.
    Huff, J. Long term in vivo results for chemical car-cinogens. Proc. Am. Assoc. Cancer Res. 30: 447, 1989.Google Scholar
  24. 24.
    Jenkins, N. A., N. G. Copeland, B. A. Taylor, H.G. Bedigian, and B. K. Lee. Ecotropic murine leukemia virus DNA content of normal and lymphomatus tissues of BXH-2 recombinant inbred mice. J. Virol. 42, 379–388, 1982.Google Scholar
  25. 25.
    Klein, G. The approaching era of the tumor suppressor genes. Science 238: 1539–1545, 1987.CrossRefGoogle Scholar
  26. 26.
    Lindgren, V., M. Sippola-Thiele, J. Skowronski, E. Wetzel, P.M. Howley, and D. Hanahan. Specific chromosomal abnormalities characterize fibrosarcomas of bovine papillomavirus type 1 transgenic mice. Proc. Natl. Acad. Sci. USA 86: 5025–5029, 1989.CrossRefGoogle Scholar
  27. 27.
    McMahon, G., L. Hanson, J-J. Lee, and G. N. Wogan. Identification of an activated c-Ki-ras oncogene in rat liver tumors induced by aflatoxin B1. Proc. Natl Acad. Sci. USA 83: 9418–9422, 1986.CrossRefGoogle Scholar
  28. 28.
    Mazur, M. and B. W. Glickman. Sequence specificity of mutations induced by benzo[a]pyrene-7, 8-diol-9, 10-epoxide at endogenous aprt gene in CHO cells. Somat. Cell. Mol. Genet. 14: 393–400, 1988.CrossRefGoogle Scholar
  29. 29.
    Newcomb, E. W., J. J. Steinberg, and A. Pellicer. Ras Oncogenes and phenotypic staging in N-methyl-nitrosourea- and y-irradiation-induced thymic lymphomas in C57BL/6J mice. Cancer Res. 48: 5514–5521, 1988.Google Scholar
  30. 30.
    Notario, V., S. Sukumar, E. Santos, and M. Barbacid. A common mechanism for the malignant activation of ras oncogenes in human neoplasia and in chemically induced animal tumors, in: Cancer Cells, Oncogenes and Viral Genes (G.F. Vande Woude, A. J. Levine, W. C. Topp, and D. Watson, eds.), pp. 425–432, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1984.Google Scholar
  31. 31.
    Ochiya, T., A. Fujiyama, S. Fukushige, I. Hatada, and K. Matsubara. Molecular cloning of an oncogene from a human hepatocellular carcinoma. Proc. Natl. Acad. USA 83: 4993–4997, 1986.CrossRefGoogle Scholar
  32. 32.
    Parada, L.F. and R. A. Weinberg. Presence of a Kirsten murine sarcoma virus ras oncogene in cells transformed by 3-methylcholanthrene. Mol. Cell. Biol. 3: 2298–2301, 1983.Google Scholar
  33. 33.
    Perantoni, A. O., J. M. Rice, C. D. Reed, M. Watatani, and M. L. Wenk. Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea. Proc. Natl. Acad. Sci. USA 84: 6317–6321, 1987.CrossRefGoogle Scholar
  34. 34.
    Ponder, B. Gene losses in human tumors. Nature (London) 335: 400–402, 1988.CrossRefGoogle Scholar
  35. 35.
    Quintanilla, M., K. Brown, M. Ramsden, and A. Balmain. Carcinogen specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature (London) 322: 78–80, 1986.CrossRefGoogle Scholar
  36. 36.
    Reynolds, S.H., S.J. Stowers, R.P. Maronpot, M.W. Anderson, and S.A. Aaronson. Detection and identification of activated oncogenes in spontaneously occurring benign and malignant hepatocellular tumors of the B6C3F1 mouse. Proc. Natl. Acad. Sci. USA 83: 33–37, 1986.CrossRefGoogle Scholar
  37. 37.
    Reynolds, S.H., S.J. Stowers, R.M. Patterson, R.P. Maronpot, S.A. Aaronson, and M.W. Anderson. Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Science 237: 1309–1316, 1987.CrossRefGoogle Scholar
  38. 38.
    Richardson, K.K., F.C. Richardson, R.M. Crosby, J. A. Swenberg, and T. R. Skopek. DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea of N-ethyl-N-nitrosourea. Proc. Natl. Acad. Sci. USA 84: 344–348, 1987.CrossRefGoogle Scholar
  39. 39.
    Rodenhuis, S., R. J. C. Slebos, A. J. M. Boot, S.G. Evers, W. J. Mooi, S. Sc. Wagenaar, P. Ch. van Bodegom, and J.L. Bos. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res. 48: 5738–5741, 1988.Google Scholar
  40. 40.
    Stowers, S.J., P.L. Glover, S.H. Reynolds, L.R. Boone, R.P. Maronpot, and M.W. Anderson. Activation of the K-ras proto-oncogene in lung tumors from rats and mice chronically exposed to tetranitromethane. Cancer Res. 47, 3212–3219, 1987.Google Scholar
  41. 41.
    Stowers, S.J., R.W. Wiseman, J.M. Ward, E.C. Miller, J. A. Miller, M.W. Anderson, and A. Eva. Detection of activated proto-oncogenes in N-nitrosodiethylamine-induced liver tumors: a comparison between B6C3F1 mice and Fischer 344 rats. Carcinogenesis 9: 271–276, 1988.CrossRefGoogle Scholar
  42. 42.
    Sinn, E., W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder. Coexpression of MMTV/v-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49: 465–475, 1987.CrossRefGoogle Scholar
  43. 43.
    Stone, J.C., J.L. Crosby, C. A. Kozak, A. R. Schievella, R. Bernards, and J.H. Nadeau. The murine retinoblastoma homolog maps to chromosome 14 near Es-10. Genomics 5: 70–75, 1989.CrossRefGoogle Scholar
  44. 44.
    Traina, V. L., B. A. Taylor, and J. C. Cohen. Genetic mapping of endogenous mouse mammary tumor viruses: locus characterization, segregation, and chromosomal distribution. J. Virol. 40: 735–744, 1981.Google Scholar
  45. 45.
    Vogelstein, B., E.R. Fearon, S. R. Hamilton, S.E. Kern, A.C. Preisinger, M. Leppert, Y. Nakamura, R. White, A. M. M. Smits, and J. L. Bos. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319: 525–532, 1988.CrossRefGoogle Scholar
  46. 46.
    Vesselinovitch, S. D. and N. Mchailovich. Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse. Cancer Res. 43: 4253–4259, 1983.Google Scholar
  47. 47.
    Watatani, M. , A. O. Perantoni, C. D. Reed, T. Enomoto, M. L. Wenk, and J. M. Rice. Infrequent activation of K-ras, H-ras, and other oncogenes in hepatocellular neoplasms initiated by methyl (acetoxy-methyl)-nitrosamine, a methylating agent, and promoted by phenobarbital in F344 rats. Cancer Res. 49: 1103–1109, 1989.Google Scholar
  48. 48.
    Weinberg, R.A. Oncogenes, antioncogenes, and the molecular basis of multistep carcinogenesis. Cancer Res. 49: 3713–3721, 1989.Google Scholar
  49. 49.
    Weston, A., J.C. Willey, R. Modali, H. Sugimura, E. M. McDowell, J. Resau, B. Light, A. Haugen, D.L. Mann, B.F. Trump, and C.C. Harris. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous-cell carcinoma, large-cell carcinoma, and adenocarcinoma of the human lung. Proc. Natl. Acad. Sci. USA 86 : 5099–5103, 1989.CrossRefGoogle Scholar
  50. 50.
    Wiseman, R.W., S.J. Stowers, E.C. Miller, M.W. Anderson, and J. A. Miller. Activating mutations of the c-Ha-ras proto-oncogene in chemically induced hepatomas of the male B6C3F1 mouse. Proc. Natl. Acad. Sci. USA 83: 5825–5829, 1986.CrossRefGoogle Scholar
  51. 51.
    Yager, J.D. and J. zurlo. Oncogene activation and expression during carcinogenesis in liver and pancreas, in: The Pathobiology of Neoplasia (A.E. Sirica, Ed.), Plenum Publishing Corp., pp. 399–415, 1989.CrossRefGoogle Scholar
  52. 52.
    Yokota, J., M. Wada, Y. Shimosato, M. Terada, and T. Sugimura. Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. USA 84: 9252–9256, 1987.CrossRefGoogle Scholar
  53. 53.
    You, M., U. Candrian, R. P. Maronpot, G. D. Stoner, and M.W. Anderson. Activation of the K-ras proto-oncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse. Proc. Natl. Acad. Sci. USA 86: 3070–3074, 1989.CrossRefGoogle Scholar
  54. 54.
    Zarbl, H., S. Sukumar, A.V. Arthur, D. Martin-Zanca and M. Barbacid. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature (London) 315: 382–385, 1985.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Roger W. Wiseman

There are no affiliations available

Personalised recommendations