Two-Event Carcinogenesis: Roles of Oncogenes and Antioncogenes

  • Alfred G. KnudsonJr.


A biological model for carcinogenesis that considers two genetic events as critical can be fitted well to age-specific incidence data on cancers of both children and adults. In the past few years advances in cancer genetics have disclosed two classes of genes that are the apparent targets of such events. For one class, the oncogenes, a single event can cause inappropriate activation, but both in vitro and in vivo data suggest that a second oncogene must also be activated. For the second class, the antioncogenes, two events are necessary for carcinogenesis, these involving inactivation or loss of both copies of a specific antioncogene. Thus, two events may be necessary for the induction of all forms of cancer. Alterations in other oncogenes and antioncogenes often occur in all cancers, but individually these may be neither necessary nor sufficient in carcinogenesis.


Renal Cell Carcinoma Colon Carcinoma Familial Adenomatous Polyposis Acoustic Neuroma Embryonal Rhabdomyosarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali, LU., Lidereau, R., Theillet, C., Callahan, R. (1987). Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science, 238:185–188.CrossRefGoogle Scholar
  2. 2.
    Arinami, T., Kondo, I., Hamaguchi, H., Nakajima, S. (1986). Multifocal meningiomas in a patient with a constitutional ring chromosome 22. J. Med. Genet., 23:178–180.CrossRefGoogle Scholar
  3. 3.
    Astrin, S.M., Costanzi, C. (1989). The molecular genetics of colon cancer. Sem. Oncol., 16:138–147.Google Scholar
  4. 4.
    Baker, S.J., Fearon, E.R., Nigro, J.M., Hamilton, S.R., Preisinger, A.C., Jessup, J.M., van Tuinen, P., Ledbetter, D.H., Barker, D.F., Nakamura, Y., White, R., Vogelstein, B. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 244:217–221.CrossRefGoogle Scholar
  5. 5.
    Benedict, W.F., Murphree, A.L., Banerjee, A., Spina, C.A., Sparkes, M.D., Sparkes, R.S. (1983). Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science, 219:973–975.CrossRefGoogle Scholar
  6. 6.
    Bodmer, W.F., Bailey, C.J., Bodmer, J., Bussey, H.J.R., Ellis, A., Gorman, P., Lucibello, F.C., Murday, V.A., Rider, S.H., Scambler, P., Sheer, D., Solomon, E., Spurr, N.K. (1987). Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature, 328:614–616.CrossRefGoogle Scholar
  7. 7.
    Cavenee, W.K., Dryja, T.P., Phillips, R.A., Benedict, W.F., Godbout, R., Gallie, B.L., Murphree, A.L., Strong, L.C., White, R.L. (1983). Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature, 305:779–784.CrossRefGoogle Scholar
  8. 8.
    Cohen, A.J., Li, F.P., Berg, S., Marchetto, D.J., Tsai, S., Jacobs, S.C., Brown, R.S. (1979). Hereditary renal-cell carcinomas associated with a chromosomal translocation. N. Eng. J. Med., 301:592–595.CrossRefGoogle Scholar
  9. 9.
    Dryja, T.P., Rapaport, J.M., Joyce, J.M., Petersen, R.A. (1986). Molecular detection of deletions involving band ql4 of chromosome 13 in retinoblastomas. Proc. Natl. Acad. Sci. USA, 83:7391–7394.CrossRefGoogle Scholar
  10. 10.
    Duncan, A.M., Partington, M.W., Soudek, D. (1987). Neurofibromatosis in a man with a ring 22: in situ hybridization studies. Cancer Genet. Cytogenet., 25:169–174.CrossRefGoogle Scholar
  11. 11.
    Erisman, M.D., Scott, J.K., Astrin, S.M. (1989). Evidence that the familial adenomatous polyposis is involved in a subset of colon cancers with a complementable defect in c-myc regulation. Proc. Natl. Acad. Sci. USA, 86:4264–4268.CrossRefGoogle Scholar
  12. 12.
    Fearon, E.R., Vogelstein, B., Feinberg, A.P. (1984). Somatic deletion and duplication of genes on chromosome 11 in Wilms’ tumours. Nature, 309:176–178.CrossRefGoogle Scholar
  13. 13.
    Fialkow, P.J., Martin, P.J., Najfeld, V., Penfold, G.K., Jacobson, R.J., Hansen, J.A. (1981). Evidence for a multistep pathogenesis of chronic myelogenous leukemia. Blood, 58:158–163.Google Scholar
  14. 14.
    Francke, U., Holmes, L.B., Atkins, L., Riccardi, V.M. (1979). Aniridia-Wilms’ tumor association: evidence for specific deletion of 11p13. Cytogenet. Cell Genet., 24:185–192.CrossRefGoogle Scholar
  15. 15.
    Friend, S.H., Bernards, R., Rogelj, S., Weinberg, R.A., Rapaport, J.M., Albert, D.M., Dryja, T.P. (1986). A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature, 323:643–646.CrossRefGoogle Scholar
  16. 16.
    Fung, Y-KT., Murphree, A.L., T’Ang, A., Qian, J., Hinrichs, S.H., Benedict, W.F. (1987). Structural evidence for the authenticity of the human retinoblastoma gene. Science, 236:1657–1661.CrossRefGoogle Scholar
  17. 17.
    Godbout, R., Dryja, T.P., Squire, J., Gallie, B.L., Phillips, R.A. (1983). Somatic inactivation of genes on chromosome 13 is a common event in retinoblastoma. Nature, 304:451–453.CrossRefGoogle Scholar
  18. 18.
    Grundy, P., Koufos, A., Morgan, K., Li, F.P., Meadows, A.T., Cavenee, W.K. (1988). Familial predisposition to Wilms’ tumour does not map to the short arm of chromosome 11. Nature, 336:374–376.CrossRefGoogle Scholar
  19. 19.
    Haluska, F.G., Tsujimoto, Y., Croce, C.M. (1987). Oncogene activation by chromosome translocation in human malignancy. Ann. Rev. Genet., 21:321–345.CrossRefGoogle Scholar
  20. 20.
    Harbour, J.W., Lai, S-L., Whang-Peng, J., Gazdar, A.F., Minna, J.D., Kaye, F.J. (1988). Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science, 241:353–357CrossRefGoogle Scholar
  21. 21.
    Hayward, W.S., Neel, B.G., Astrin, S.M. (1981). Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature, 290:475–480.CrossRefGoogle Scholar
  22. 22.
    Herrera, L., Kakati, S., Gibas, L., Pietrzak, E., Sandberg, A.A. (1986). Brief clinical report: Gardner syndrome in a man with an interstitial deletion of 5q. Am. J. Hum. Genet., 25:473–476.Google Scholar
  23. 23.
    Huang, H-J.S., Yee, J.-K., Shew, J.-Y., Chen, P.-L., Bookstein, R., Freidmann, T., Lee, E. Y.-H.P., Lee, W.-H. (1988). Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science, 242:1563–1566.CrossRefGoogle Scholar
  24. 24.
    Huff, V., Compton, D.A., Chao, L.-Y., Strong, L.C., Geiser, C.F., Saunders, G.F. (1988). Lack of linkage of familial Wilms’ tumour to chromosomal band 11p13. Nature, 336:377–378.CrossRefGoogle Scholar
  25. 25.
    Klein, G. (1987). The approaching era of the tumor suppressor genes. Science 238:1539–1545.CrossRefGoogle Scholar
  26. 26.
    Knudson, A.G. (1971). Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA, 68:820–823.CrossRefGoogle Scholar
  27. 27.
    Knudson, A.G. (1978). Retinoblastoma: a prototypic hereditary neoplasm. Semin. Oncol., 5:57–60.Google Scholar
  28. 28.
    Knudson, A.G. (1985). Hereditary cancer, oncogenes, and antioncogenes. Cancer Res., 45:1437–1443.Google Scholar
  29. 29.
    Knudson, A.G., Strong, L.C. (1972). Mutation and cancer: neuroblastoma and pheochromocytoma. Am. J. Hum. Genet., 24:514–532.Google Scholar
  30. 30.
    Knudson, A.G., Strong, L.C. (1972). Mutation and cancer: a model for Wilms’ tumor of the kidney. J. Natl. Cancer Inst., 48:313–324.Google Scholar
  31. 31.
    Knudson, A.G., Strong, L.C., Anderson, D.E. (1973). Heredity and cancer in man. Prog. Med. Genet., 9:113–158.Google Scholar
  32. 32.
    Knudson, A.G., Meadows, A.T., Nichols, W.W., Hill, R. (1976). Chromosomal deletion and retinoblastoma. N. Engl. J. Med., 295:1120–1123.CrossRefGoogle Scholar
  33. 33.
    Kok, K., Osinga, J., Carritt, B., Davis, M.B., van der Hout, A.H., van der Veen, A.Y., Landsvater, R.M., de Leij, L.F.M.H., Berendsen, H.H., Postmus, P.E., Poppema, S., Buys, C.H.C.M. (1987). Deletion of a DNA sequence at the chromosomal region 3p21 in all major types of lung cancer. Nature, 330:578–581.CrossRefGoogle Scholar
  34. 34.
    Koufos, A., Hansen, M.F., Lampkin, D.B., Workman, M.L., Copeland, N.G., Jenkins, N.A., Cavenee, W.K. (1984). Loss of alleles at loci on human chromosome 11 during genesis of Wilms’ tumour. Nature, 309:170–172.CrossRefGoogle Scholar
  35. 35.
    Kovacs, G., Erlandsson, R., Boldog, F., Ingvarson, S., Müller-Brechlin, R., Klein, G., Sümegi, J. (1988). Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc. Natl. Acad. Sci. USA, 85:1571–1575.CrossRefGoogle Scholar
  36. 36.
    Land, H., Parada, L.F., Weinberg, R.A. (1983). Cellular oncogenes and multistep carcinogenesis. Science, 222:771–778.CrossRefGoogle Scholar
  37. 37.
    Law, D.J., Olschwang, S., Monpezat, J-P., Lefrancois, D., Jagelman, D., Petrelli, N.J., Thomas, G., Feinberg, A.P. (1988). Concerted nonsyntenic allelic loss in human colorectal carcinoma. Science, 241:961–965.CrossRefGoogle Scholar
  38. 38.
    Lee, W-H., Bookstein, R., Hong, F., Young, L-J., Shew, J-Y., Lee, EY-HP. (1987). Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science, 235:1394–1399.CrossRefGoogle Scholar
  39. 39.
    Lee W-H., Shew, J-Y., Hong, F.D., Sery, T.W., Donoso, L.A., Young, L-J., Bookstein, R., Lee, EY-HP. (1987). The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature, 329:642–645.CrossRefGoogle Scholar
  40. 40.
    Lee, E.Y-H.P., To, H., Shew, J-Y., Bookstein, R., Scully, P., Lee, W-H. (1988). Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science, 241:218–221.CrossRefGoogle Scholar
  41. 41.
    Leppert, M., Dobbs, M., Scambler, P., O’Connell, P., Nakamura, Y., Stauffer, D., Woodward, S., Burt, R., Hughes, J., Gardner, E., Lathrop, M., Wasmuth, J., Lalouel, J-M., White, R. (1987). The gene for familial polyposis coli maps to the long arm of chromosome 5. Science, 238:1411–1415.CrossRefGoogle Scholar
  42. 42.
    Lundberg, C., Skoog, L., Cavenee, W.K., Nordenskjöld, M. (1987). Loss of heterozygosity in human ductal breast tumors indicates a recessive mutation on chromosome 13. Proc. Natl. Acad. Sci. USA, 84:2372–2376.CrossRefGoogle Scholar
  43. 43.
    Mackay, J., Steel, C.M., Elder, P.A., Forrest, A.P.M., Evans, H.J. (1988). Allele loss on short arm of chromosome 17 in breast cancers. Lancet, 2:1384–1385.CrossRefGoogle Scholar
  44. 44.
    Meese, E., Blin, N. Zang, K.D. (1987). Loss of heterozygosity and the origin of meningioma. Hum. Genet., 77:349–351.CrossRefGoogle Scholar
  45. 45.
    Moolgavkar, S. H., Knudson, A. G. (1981). Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst., 66:1037–1052.Google Scholar
  46. 46.
    Naylor, S.L., Johnson, B.E., Minna, J.D., Sakaguchi, A.Y. (1987). Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature, 329:451–454.CrossRefGoogle Scholar
  47. 47.
    Okamoto, M., Sasaki, M., Sugio, K., Sato, C., Iwama, T., Ikeuchi, T., Tonomura, A., Sasazuki, T., Miyaki, M. (1988). Loss of constitutional heterozygosity in colon carcinoma from patients with familial polyposis coli. Nature, 331:273–277.CrossRefGoogle Scholar
  48. 48.
    Orkin, S.H., Goldman, D.S., Sallan, S.E. (1984). Development of homozygosity for chromosome 11p markers in Wilms’ tumor. Nature, 309:172–174.CrossRefGoogle Scholar
  49. 49.
    Reeve, A.E., Housiaux, P.J., Gardner, R.J.M., Chewings, W.E., Grindley, R.M., Millow, L.J. (1984). Loss of Harvey ras allele in sporadic Wilms’ tumour. Nature, 309:174–176.CrossRefGoogle Scholar
  50. 50.
    Rouleau, G.A., Wertelecki W., Haines, J.L., Hobbs, W.J., Trofatter, J.A., Seizinger, B.R., Martuza, R.L., Superneau, D.W., Conneally, P.M., Gusella, J.F. (1987). Genetic linkage of bilateral acoustic neurofibromatosis to a DNA marker on chromosome 22. Nature, 329:246–248.CrossRefGoogle Scholar
  51. 51.
    Schroeder, W.T., Chao, L.-Y., Dao, D.D., Strong, L.C., Pathak, S., Riccardi, V., Lewis, W.H., Saunders, G.F. (1987). Nonrandom loss of maternal chromosome 11 alleles in Wilms’ tumors. Am. J. Hum. Genet., 40:413–420.Google Scholar
  52. 52.
    Scrable, H., Cavenee, W., Ghavimi, F., Lovell, M., Morgan, K., Sapienza, C. (1989). A model for embryonal rhabdomyosarcoma tumorigenesis which involves genome imprinting. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  53. 53.
    Seizenger, B.R., Rouleau, G., Ozelius, L.G., Lane, A.H., St George-Hyslop, P., Huson, S., Gusella, J.F., Martuza, R.L. (1987). Common pathogenetic mechanism for three tumor types in bilateral acoustic neurofibromatosis. Science, 236:317–319.CrossRefGoogle Scholar
  54. 54.
    Seizinger, B.R., Rouleau, G.A., Ozelius, L.J., Lane, A.H., Farmer, G.E., Lamiell, J.M., et al. (1988). Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature, 332:268–269.CrossRefGoogle Scholar
  55. 55.
    Shih, C., Padhy, L.C., Murray, M., Weinberg, R.A. (1981). Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 290:261–264.CrossRefGoogle Scholar
  56. 56.
    Solomon, E., Voss, R., Hall, V., Bodmer, W.F., Jass, J.R., Jeffreys, A.J., Lucibello, F.C., Patel, I., Rider, S.H. (1987). Chromosome 5 allele loss in human colorectal carcinomas. Nature, 328:616–619.CrossRefGoogle Scholar
  57. 57.
    Sparkes, R.S., Sparkes, M.C., Wilson, M.G., Towner, J.W., Benedict, W., Murphree, A.L., Yunis, J.J. (1980). Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13ql4. Science, 208:1042–1044.CrossRefGoogle Scholar
  58. 58.
    Sparkes, R.S., Murphree, A.L., Lingua, R.W., Sparkes, M.C., Field, L.L., Funderburk, S.J., Benedict, W.F. (1983). Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science, 219:971–973.CrossRefGoogle Scholar
  59. 59.
    Stehelin, D.,Varmus, H.E., Bishop, J.M., Vogt, P.K. (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature, 260:170–173.CrossRefGoogle Scholar
  60. 60.
    Stewart, T.A., Pattengale, P.K., Leder, P. (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MRV/myc fusion genes. Cell, 38:627–637.CrossRefGoogle Scholar
  61. 61.
    T’Ang, A., Varley, J.M., Chakraborty, S., Murphree, A.L., Fung, Y.-K.T. (1988). Structural rearrangment of the retinoblastoma gene in human breast carcinoma. Science, 242:263–266.CrossRefGoogle Scholar
  62. 62.
    Vogelstein, B., Fearon, E.R., Hamilton, S.R., Kern, S.E. Preisinger, A.C., Leppert, M., Nakamura, Y. White, R., Smits, A.M.M., Bos, J.L. (1988). Genetic alterations during colorectal tumor development. N. Engl. J. Med., 319:525–532.CrossRefGoogle Scholar
  63. 63.
    Vogelstein, B., Fearon, E.R., Kern, S.E., Hamilton, S.R., Preisinger, A.C., Nakamura, Y., White, R. (1989). Allelotype of colorectal carcinomas. Science, 244:207–211.CrossRefGoogle Scholar
  64. 64.
    Wang, N., Perkins, K.L. (1984). Involvement of band 3pl4 in t(3:8) hereditary renal carcinoma. Cancer Genet. Cytogenet., 11:479–481.CrossRefGoogle Scholar
  65. 65.
    Weissman, B.E., Saxon, P.J., Pasquale, S.R., Jones, G.R., Geiser, A.G., Stanbridge, E.J. (1987). Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression. Science, 236:175–180.CrossRefGoogle Scholar
  66. 66.
    Yokota, J., Wada, M., Shimosato, Y., Terada, M., Sugimura, T. (1987). Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. USA, 84:9252–9256.CrossRefGoogle Scholar
  67. 67.
    Zbar, B., Brauch, H., Talmadge, C., Linehan, M. (1987). Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature, 327:723–726.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Alfred G. KnudsonJr.

There are no affiliations available

Personalised recommendations