Advertisement

The Somatic Mutational Component of Human Carcinogenesis

  • Mortimer L. Mendelsohn

Abstract

Somatic mutation is the prototypic mechanism for the immediate, irreversible, additive effects that are characteristic of initiation of carcinogenesis. Such genetic changes are often used, explicitly or implicitly, as the transition device between stages in quantitative multistage models designed to describe carcinogenesis. Recent developments in the genetics of cancer and in somatic mutagenesis greatly increase our understanding of these processes, and are worth reviewing in the context of such multistage modelling.

Keywords

Background Rate Ataxia Telangiectasia Atomic Bomb Survivor Hypoxanthine Phosphoribosyltransferase Cancer Suppressor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albertini, R.J., Sullivan, L.M., Berman, J.K., Greene, C.J., Stewart, J.A., Silveira, J.M. and O’Neill, J.P. Mutagenicity monitoring in humans by autoradiographic assay for mutant T lymphocytes. Mutat. Res. 204: 481–492, 1988.CrossRefGoogle Scholar
  2. 2.
    Ammenheuser, M.M., Ward, J.B.Jr., Whorton, E.B.Jr., Killian, J.M. and Legator, M.S.. Elevated frequencies of 6-thioguanine-resistant lymphocytes in multiple sclerosis patients treated with cyclophosphamide: a prospective study. Mutat. Res., 204: 509–520, 1988.CrossRefGoogle Scholar
  3. 3.
    Bigbee, W.L., Langlois, R.G., Swift, M. and Jensen, W.L.. Evidence for an elevated frequency of invivo somatic cell mutations in ataxia telangiectasia. Am. J. Hum. Genet., 44: 402–408, 1989.Google Scholar
  4. 4.
    Bigbee, W.L., Langlois, R.G., Jensen, R.H., Wyrobek, A.W. and Everson, E.G. Chemotherapy with mutagenic agents elevates the in vivo frequency of glycophorin A “null” variant erythrocytes. Environ. Mutagen. 9: 14, 1987.Google Scholar
  5. 5.
    Bigbee, W.L., Wyrobek, A.J., Langlois, R.G., Jensen, R.H. and Everson, R.B. The effect of chemotherapy on the in vivo frequency of glycophorin A “null” variant erythrocytes. Mutation Res. (in press, 1989).Google Scholar
  6. 6.
    Cole, J., Green, M.H.L., James, S.E., Henderson L. and Cole, H. A further assessment of factors influencing measurements of thioguanine-resistant mutant frequency in circulating T-lymphocytes. Mutat. Res., 204: 493–507, 1988.CrossRefGoogle Scholar
  7. 7.
    Hakoda, M., Akiyama, M., Kyoizumi, S., Awa, A.K., Yamakido, M. and Otake, M. Increased somatic cell mutant frequency in atomic bomb survivors. Mutation Res., 201: 39–48, 1988.CrossRefGoogle Scholar
  8. 8.
    Janatipour, M., Trainor, K.J., Kutlaca, R., Bennett, G., Hay, J., Turner, D.R. and Morley, A.A. Mutations in human lymphocytes studied by an HLA selection system. Mutation Res. 198: 221 – 226, 1988.CrossRefGoogle Scholar
  9. 9.
    Jensen, R.H., Bigbee, W.L. and Langlois, R.G.. In vivo somatic mutations in the glycophorin A locus of human erythroid cells. Banbury Report 28: Mammalian Cell Mutagenesis, 149–159, 1987.Google Scholar
  10. 10.
    Knudson, A.G., Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Nat. Acad. Sci.(USA), 68: 820–823, 1971.CrossRefGoogle Scholar
  11. 11.
    Kyoizumi, S., Nakamura N., Hakoda, M., Awa, A.A., Bean, M.A., Jensen, R.H. and Akiyama, M. Detection of somatic mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors using a single beam flow sorter. Cancer Res. 49: 581–588, 1989.Google Scholar
  12. 12.
    Langlois, R.G., Bigbee, W L., Jensen, R.H. and German J.L. Evidence for elevated in vivo mutation and somatic recombination in Bloom’s syndrome. Proc. Nat. Acad. Sci. (USA) (In press, 1989).Google Scholar
  13. 13.
    Langlois, R.G., Bigbee, W.L., Kyoizumi, S., Nakamura, N., Bean, M.A., Akiyama, M. and Jensen, R.H.: Evidence for increased somatic cell mutations at the glycophorin A locus in atomic bomb survivors. Science 236: 445–448, 1987.CrossRefGoogle Scholar
  14. 14.
    Mohrenweiser, H.W. and Jones, I.M. Review of the molecular characteristics of gene mutations of the germline and somatic cells of the human. Mutation Res. (In press, 1989.)Google Scholar
  15. 15.
    Morley, A.A., Trainor, K.J., Seshadri, R. and Ryall, R.B. Measurement of in vivo mutation in human lymphocytes. Nature (London), 302: 155–156, 1983.CrossRefGoogle Scholar
  16. 16.
    Nicklas, J.A., O’Neill, J.P., Sullivan, L.M., Hunter, T.C., Allegretta, M., Chastenay, B.F., Libbus, B.L. and Albertini, R. J. Molecular analyses of in vivo hypoxanthine-guanine phosphoribosyltransferase mutations in human T-lymphocytes: II. Demonstration of a clonal amplification of hprt mutant T-lymphocytes in vivo. Envir. & Molec. Mutagen. 12, 271–284, 1988.CrossRefGoogle Scholar
  17. 17.
    Papayannopoulou, Th., Mcguire, T.C., Lim, G., Garzel, E. and Stamatoyannopoulos, G. Identification of haemoglobin S in red cells and normoblasts, using fluorescent anti-Hb S antibodies. Brit J Haemat 34: 25–31, 1976.CrossRefGoogle Scholar
  18. 18.
    Sanderson, B.J.S., Dempsey, J.L. and Morley, A.A. Mutations in human lymphocytes: Effect of X- and UV-irradiation. Mutat. Res., 140: 223–227, 1984.CrossRefGoogle Scholar
  19. 19.
    Shimizu, Y., Kato, H., Schull, W.J., Preston, D.L., Fujita, S. and Price, D.A. Studies of the mortality of A-bomb survivors. 9. Mortality, 1950–1985: Part 1. Comparison of risk coefficients for site-specific cancer mortality based on the DS86 and T65DR shielded kerma and organ doses. Radiation Res., 118: 502–524. 1989.CrossRefGoogle Scholar
  20. 20.
    Tates, A.D., Bernini, L.F., Natarajan, A.T., Ploem, J.S., Verwoerd, N.P., Cole, J., Green, M.H.L., Arlett, C.F. and Norris, P.N. Detection of somatic mutants in man: hprt mutations in lymphocytes and hemoglobin mutations in erythrocytes. Mutation Res., 213: 73–82, 1989.CrossRefGoogle Scholar
  21. 21.
    Trainor, K.J., Wigmore, D.J., Chrysostomou, A., Dempsey, J.L., Seshadri, R. and Morley, A.A. Mutation frequency in human lymphocytes increases with age. Mech. Age Dev., 27: 83–86, 1984.CrossRefGoogle Scholar
  22. 22.
    Turner, D.R., Grist, S.A., Janatipour, M. and Morley, A.A. Mutations in human lymphocytes commonly involve gene duplication and resemble those seen in cancer cells. Proc Nat Acad Sci (USA) 85: 3189–3192, 1988.CrossRefGoogle Scholar
  23. 23.
    Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J. A. and Weiner A.M. Molecular Biology of the Gene, 4th Edition, The Benjamin/Cummings Publishing Co, Inc., Menlo Park, 1987.Google Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Mortimer L. Mendelsohn

There are no affiliations available

Personalised recommendations