Skip to main content

Proteases and Pathological Neurodegeneration

  • Chapter
Book cover Etiopathogenesis

Part of the book series: Advances in Research on Neurodegeneration ((ARN,volume 2))

  • 35 Accesses

Abstract

An understanding of the biochemical processes that lead to neuronal damage is crucial to the development of therapies aimed at slowing the progression of neurodegenerative diseases. While brain proteases have long been recognized for their importance to neuropeptide metabolism and protein turnover (Loh et al., 1984; Pope and Nixon, 1984), it is becoming increasingly clear that proteolysis plays a role in pathological neuronal degeneration as well. This chapter briefly reviews the evidence relating proteolytic mechanisms to the neurodegeneration triggered by injury or disease. The focus is on a calcium-dependent protease, calpain 1, and its possible involvement in mediating structural damage produced by excessive accumulation of intracellular free calcium. Because the role of calpain 1 in neurodegenerative processes has been the subject of recent review (Seubert and Lynch, 1990; Siman, 1990; 1992), the present brief review is followed by a description of new studies directed at the localization, timing, and mode of activation of calpain 1 in animal models of neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Choi DW (1985): Glutamate neurotoxicity is cortical cell culture in calcium dependent. Neurosci Lett 58:293–297

    Article  PubMed  CAS  Google Scholar 

  • Davis J, Bennett V (1983):Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits. J Biol Chem 258:7757–7766

    PubMed  CAS  Google Scholar 

  • Evans MC, Griffiths T, Meldrum BS (1984): Kainic acid seizures and the reversibility of calcium loading in vulnerable neurons in the hippocampus. Neuropathol Appl Neurobiol 10:285–302

    Article  PubMed  CAS  Google Scholar 

  • Gill R, Foster AC, Woodruff GN (1988): MK-801 is neuroprotective in gerbils when administered during the post-ischaemic period. Neuroscience 25:847–855

    Article  PubMed  CAS  Google Scholar 

  • Harris AS, Croall DE, Morrow JS (1988): The calmodulin-binding site in α-fodrin is near the calcium-dependent protease-I cleavage site. J Biol Chem 263:15754–15761

    PubMed  CAS  Google Scholar 

  • Kirino T, Sano K (1984): Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropath (Berl) 62:201–208

    Article  CAS  Google Scholar 

  • Kudo Y, Ogura A (1986): Glutamate-induced increase in intracellular Ca2+ concentration in isolated hippocampal neurones. Br J Pharmacol 89:191–198

    PubMed  CAS  Google Scholar 

  • Lee KS, Frank S, Vanderklish P, Arai A, Lynch G (1991): Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 88:7233–7237

    Article  PubMed  CAS  Google Scholar 

  • Loh YP, Brownstein MJ, Gainer H (1984): Proteolysis in neuropeptide processing and other neural functions. Annu Rev Neurosci 7:189–222

    Article  PubMed  CAS  Google Scholar 

  • Lutz DL, Dean RL, Harris ME, Miotke JA, Ton HT, Miyazaki BK, Eveleth DD, Bartus RT (1991): Intracellular events related to the delayed neuronal death following transient global ischemia. Neurosci Abstr 17:1264

    Google Scholar 

  • Manev H, Favaron M, Guidotti A, Costa E (1989): Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36:106–112

    PubMed  CAS  Google Scholar 

  • Mellgren RL, Murachi T (1990): Intracellular Calcium-Dependent Proteolysis. Boca Raton: CRC Press

    Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971): Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14:61–76

    Article  PubMed  CAS  Google Scholar 

  • Pope A, Nixon RA (1984): Proteases of human brain. Neurochem Res 9:291–323

    Article  PubMed  CAS  Google Scholar 

  • Regehr WG, Connor JA, Tank DW (1989): Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature 341:533–536

    Article  PubMed  CAS  Google Scholar 

  • Schanne FAX, Kane AB, Young EE, Farber JL (1979): Calcium dependence of toxic cell death: a final common pathway. Science 206:700–702

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer WW (1979): Nature of mammalian neurofilaments and their breakdown by calcium. Prog Neuropathol 4:101–123

    CAS  Google Scholar 

  • Schlaepfer WW, Hasler MB (1979): Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerve. Brain Res 168:299–309

    Article  PubMed  CAS  Google Scholar 

  • Seubert P, Lynch G (1990): Plasticity to pathology: brain calpains as modifiers of synaptic structure. In: Intracellular Calcium-Dependent Proteolysis, Mellgren RL, Murachi, T, eds., pp. 251–263. Boca Raton: CRC Press

    Google Scholar 

  • Seubert P, Larson J, Oliver M, Jung MW, Baudry M, Lynch G (1988): Stimulation of NMDA receptors induces proteolysis of spectrin in hippocampus. Brain Res 460:189–194

    Article  PubMed  CAS  Google Scholar 

  • Siman R (1990): Role of calpain 1 in excitatory amino acid-induced degenerative structural changes. In: Neurotoxicity of Excitatory Amino Acids, Guidotti A, ed., pp. 145–161. New York: Raven Press

    Google Scholar 

  • Siman R (1992): Proteolytic mechanism for the neurodegeneration of Alzheimer’s disease. Ann NY Acad Sci 674:193–202

    Article  PubMed  CAS  Google Scholar 

  • Siman R, Noszek JC (1988): Excitatory amino acids activate calpain 1 and induce structural protein breakdown in vivo. Neuron 1:279–287

    CAS  Google Scholar 

  • Siman R, Baudry M, Lynch G (1984): Brain fodrin: substrate for calpain 1, an endogenous calcium-activated protease. Proc Natl Acad Sci USA 81:3572–3576

    Article  PubMed  CAS  Google Scholar 

  • Siman R, Baudry M, Lynch G (1987): Calcium-activated proteases as possible mediators of synaptic plasticity. In: Synaptic Function, Edelman GM, Gall WE, Cowan WM, eds., pp. 519–548. New York: Wiley

    Google Scholar 

  • Siman R, Card JP, Davis LG (1990): Proteolytic processing of β-amyloid precursor by calpain 1. J Neurosci 10:2400–2411

    PubMed  CAS  Google Scholar 

  • Siman R, Noszek JB, Kegerise C (1989): Calpain 1 activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci 9:1579–1590

    PubMed  CAS  Google Scholar 

  • Siman R, Gall C, Perlmutter LS, Christian C, Baudry M, Lynch G (1985): Distribution of calpain 1, an enzyme associated with degenerative activity, in rat brain. Brain Res 347:399–403

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Birkhäuser Boston

About this chapter

Cite this chapter

Siman, R., Savage, M.J., Roberts-Lewis, J.M. (1994). Proteases and Pathological Neurodegeneration. In: Mizuno, Y., Calne, D.B., Horowski, R. (eds) Etiopathogenesis. Advances in Research on Neurodegeneration, vol 2. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4684-9203-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9203-3_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4684-9205-7

  • Online ISBN: 978-1-4684-9203-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics