Enumeration in geometric lattices

  • Gian-Carlo Rota
  • Jon Folkman
  • Richard P. Stanley
  • R. P. Dilworth
  • Curtis Greene
  • Thomas A. Dowling
  • Richard M. Wilson


The papers reprinted in this chapter are concerned with enumeration within a geometric lattice. They are closely related to papers on the Tutte decomposition reprinted in the next chapter.


Boolean Algebra Homology Group Euler Characteristic Combinatorial Theory Finite Lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baclawski, K.: The Möbius algebra as a Grothendieck ring, J. Algebra 57(1979), 167–179.MathSciNetMATHCrossRefGoogle Scholar
  2. Edelman, P.H.: Zeta polynomials and the Möbius function, Europ. J. Combin. 1(1980), 335–340.MathSciNetMATHGoogle Scholar
  3. Greene, C.: On the Möbius algebra of a partially ordered set, Advances in Math. 10(1973), 177–187.MathSciNetMATHCrossRefGoogle Scholar
  4. Rota, G.-C. and Smith, D.: Enumeration under group action, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4(1977), 637–646.MathSciNetMATHGoogle Scholar
  5. Solomon, L.: The Burnside algebra of a finite group, J. Combin. Theory 2(1967), 603–615.MATHCrossRefGoogle Scholar
  6. Baclawski, K.: Whitney numbers of geometric lattices, Advances in Math. 16(1975), 125–138.MathSciNetMATHCrossRefGoogle Scholar
  7. Baclawski, K.: Galois connections and the Leray spectral sequence, Advances in Math. 25(1977), 191–215.MathSciNetMATHCrossRefGoogle Scholar
  8. Baclawski, K.: Cohen-Macaulay ordered sets, J. Algebra 63(1980), 226–258.MathSciNetMATHCrossRefGoogle Scholar
  9. Baclawski, K.: Cohen-Macaulay connectivity and geometric lattices, Europ. J. Combin. 3(1982), 293–305.MathSciNetMATHGoogle Scholar
  10. Baclawski, K.: Nonpositive Cohen-Macaulay connectivity, preprint.Google Scholar
  11. Baclawski, K. and Björner, A.: Fixed points in partially ordered sets, Advances in Math. 31(1979), 263–287.MATHCrossRefGoogle Scholar
  12. Baclawski, K. and Björner, A.: Fixed points and complements in finite lattices, J. Combin. Theory Ser. A 30(1981), 335–338.MathSciNetMATHCrossRefGoogle Scholar
  13. Björner, A.: Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260(1980), 159–183.MathSciNetMATHCrossRefGoogle Scholar
  14. Björner, A.: Homotopy type of posets and lattice complementation, J. Combin. Theory Ser. A 30(1981), 90–100.MathSciNetMATHCrossRefGoogle Scholar
  15. Björner, A.: On the homology of geometric lattices, Algebra Universalis 14(1982), 107–128.MathSciNetMATHCrossRefGoogle Scholar
  16. Björner, A., Garsia, A.M. and Stanley, R.P.: An introduction to Cohen-Macaulay partially ordered sets, Ordered Sets (I. Rival, ed.), pp. 583–615, Reidel, Dordrecht and Boston, 1982.CrossRefGoogle Scholar
  17. Björner, A. and Walker, J.W.: A homotopy complementation formula for partially ordered sets, Europ. J. Combin. 4(1983), 11–19.MATHGoogle Scholar
  18. Brini, A.: Some homological properties of partially ordered sets, Advances in Math. 43(1982), 197–201.MathSciNetMATHCrossRefGoogle Scholar
  19. Farmer, F.D.: Homology of reflexive relations, Math. Japon. 20(1975), 303–310.MathSciNetGoogle Scholar
  20. Farmer, F.D.: Homology of products and joins of reflexive relations, Discrete Math. 11(1975), 23–27.MathSciNetMATHCrossRefGoogle Scholar
  21. Farmer, F.D.: Characteristic for reflexive relations, Aequationes Math. 15(1977), 195–199.MathSciNetMATHCrossRefGoogle Scholar
  22. Farmer, F.D.: Cellular homology for posets, Math. Japon. 23(1978/79), 607–613.MathSciNetGoogle Scholar
  23. Griffiths, H.B.: The homology groups of some ordered systems, Acta Math. 129(1972), 195–235.MathSciNetMATHCrossRefGoogle Scholar
  24. Griffiths, H.B.: An exact homology sequence induced by a Galois connection, Proc. London Math. Soc. (3) 32(1976), 101–116.MathSciNetMATHCrossRefGoogle Scholar
  25. Lakser, H.: The homology of a lattice, Discrete Math. 1(1971), 187–192.MathSciNetMATHCrossRefGoogle Scholar
  26. Mather, J.: Invariance of the homology of a lattice, Proc. Amer. Math. Soc. 17(1966), 1120–1124.MathSciNetMATHCrossRefGoogle Scholar
  27. Orlik, P. and Solomon, L.: Combinatorics and topology of complements of hyperplanes, Invent. Math. 56(1980), 167–189.MathSciNetMATHCrossRefGoogle Scholar
  28. Quillen, D.: Homotopy properties of the poset of non-trivial p-subgroups of a group, Advances in Math. 28(1978), 101–128.MathSciNetMATHCrossRefGoogle Scholar
  29. Rota, G.-C: On the combinatorics of the Euler characteristic, Studies in Pure Mathematics (Presented to Richard Rado), pp. 221–233, Academic Press, London, 1971.Google Scholar
  30. Stanley, R.P.: Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249(1979), 139–157.MathSciNetMATHCrossRefGoogle Scholar
  31. Walker, J.W.: Homotopy type and Euler characteristic, Europ. J. Combin. 2(1981), 373–384.MATHGoogle Scholar
  32. Brylawski, T.: Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203(1975), 1–44.MathSciNetMATHCrossRefGoogle Scholar
  33. Brylawski, T. and Oxley, J.G.: Several identities for the characteristic polynomial of a combinatorial geometry, Discrete Math. 31(1980), 161–170.MathSciNetMATHCrossRefGoogle Scholar
  34. Brylawski, T. and Oxley, J.G.: The broken-circuit complex: its structure and factorization, Europ. J. Combin. 2(1981), 107–121.MathSciNetMATHGoogle Scholar
  35. Dowling, T.A.: A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B 14(1973), 61–86.MathSciNetMATHCrossRefGoogle Scholar
  36. Greene, C.: On the Möbius algebra of a partially ordered set, Advances in Math. 10(1973), 177–187.MathSciNetMATHCrossRefGoogle Scholar
  37. Stanley, R.P.: Supersolvable lattices, Algebra Universalis 2(1972), 197–217.MathSciNetMATHCrossRefGoogle Scholar
  38. Stanley, R.P.: Finite lattices and Jordan-Hölder sets, Algebra Universalis 4(1974), 361–371.MathSciNetMATHCrossRefGoogle Scholar
  39. Basterfield, J.G. and Kelly, L.M.: A characterization of sets of n points which determine n hyperplanes, Proc. Cambridge Philos. Soc. 64(1968), 585–588.MathSciNetMATHCrossRefGoogle Scholar
  40. Björner, A.: Some matroid inequalities, Discrete Math. 31(1980), 101–103.MathSciNetMATHCrossRefGoogle Scholar
  41. Björner, A.: The unimodality conjecture for convex polytopes, Bull. Amer. Math. Soc. (New Series) 4(1981), 187–188.MATHCrossRefGoogle Scholar
  42. Brylawski, T.: Connected matroids with the smallest Whitney numbers, Discrete Math. 18(1977), 243–252.MathSciNetMATHCrossRefGoogle Scholar
  43. Dowling, T.A.: Complementing permutations in finite lattices, J. Combin. Theory Ser. B 23(1977), 223–226.MathSciNetMATHCrossRefGoogle Scholar
  44. Dowling, T.A.: On the independent set numbers of a finite matroid, Combinatorics 79, Part I, Ann. Discrete Math. 8(1980), 21–28.MathSciNetMATHCrossRefGoogle Scholar
  45. Dowling, T.A.: On the orbit numbers of a finite geometric lattice, preprint, 1981.Google Scholar
  46. Dowling, T.A. and Wilson, R.M.: The slimmest geometric lattices, Trans. Amer. Math. Soc. 196(1974), 203–215.MathSciNetMATHCrossRefGoogle Scholar
  47. Greene, C.: A rank inequality for finite geometric lattices, J. Combin. Theory 9(1970), 357–364.MathSciNetMATHCrossRefGoogle Scholar
  48. Greene, C.: A inequality for the Möbius function of a geometric lattice, Stud. Appl. Math. 54(1975), 71–74.MathSciNetMATHGoogle Scholar
  49. Harper, L.H.: Stirling behavior is asymptotically normal, Ann. Math. Statist. 38(1967), 410–414.MathSciNetMATHCrossRefGoogle Scholar
  50. Heron, A.P.: A property of the hyperplanes of a matroid and an extension of Dilworth’s theorem, J. Math. Anal. Appl. 42(1973), 119–131.MathSciNetMATHCrossRefGoogle Scholar
  51. Kung, J.P.S.: The Radon transforms of a combinatorial geometry, I, J. Combin. Theory Ser. A 26(1979), 97–102.MathSciNetMATHCrossRefGoogle Scholar
  52. Kurtz, D.C.: A note on concavity properties of triangular arrays of numbers, J. Combin. Theory Ser. A 13(1972), 135–139.MathSciNetMATHCrossRefGoogle Scholar
  53. Lieb, E.H.: Concavity properties and a generating function for Stirling numbers, J. Combin. Theory 5(1968), 203–206.MathSciNetMATHCrossRefGoogle Scholar
  54. Mahoney, C.R.: On unimodality of the independent set numbers of a class of matroids, J. Combin. Theory Ser. B 39(1985), 77–85.MathSciNetMATHCrossRefGoogle Scholar
  55. Mason, J.H.: Matroids: unimodal conjectures and Motzkin’s theorem, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp. 207–220, Inst. Math. Appl., Southend-on-Sea, 1972.Google Scholar
  56. Motzkin, T.S.: The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc. 70(1951), 451–464.MathSciNetMATHCrossRefGoogle Scholar
  57. Seymour, P.D.: On the points-lines-planes conjecture, J. Combin. Theory Ser. B 33(1982), 17–26.MathSciNetMATHCrossRefGoogle Scholar
  58. Stanley, R.P.: Two combinatorial applications of the Aleksandrov-Fenchel inequalities, J. Combin. Theory Ser. A 31(1981), 56–65.MathSciNetMATHCrossRefGoogle Scholar
  59. Stonesifer, J.R.: Logarithmic concavity for edge lattices of graphs, J. Combin. Theory Ser. A 18(1975), 36–46.MathSciNetMATHCrossRefGoogle Scholar
  60. Stonesifer, J.R.: Logarithmic concavity for a class of geometric lattices, J. Combin. Theory Ser. A 18(1975), 216–218.MathSciNetMATHCrossRefGoogle Scholar
  61. Woodall, D.R.: The inequality bv, Proc. Fifth British Combinatorial Conf. (Univ. Aberdeen, Aberdeen, 1975), pp. 661–664, Congressus Numerantium, No. 15, Utilitas Math., Winnipeg, Man,. 1976.Google Scholar
  62. Zaslavsky, T.: The slimmest arrangements of hyperplanes I: Geometric lattices and projective arrangements, Geometriae Dedicata 14(1983), 243–259.MathSciNetMATHCrossRefGoogle Scholar
  63. Zaslavsky, T.: The slimmest arrangements of hyperplanes. II: Basepointed geometric lattices and Euclidean arrangements, Mathematika 28(1981), 169–190.MathSciNetMATHCrossRefGoogle Scholar
  64. Baker, K.A.: A generalization of Sperner’s lemma, J. Combin. Theory 6(1969), 224–225.MATHCrossRefGoogle Scholar
  65. Canfield, E.R.: On a problem of Rota, Advances in Math. 29(1978), 1–10.MathSciNetMATHCrossRefGoogle Scholar
  66. Greene, C.: A rank inequality for finite geometric lattices, J. Combin. Theory 9(1970), 357–364.MathSciNetMATHCrossRefGoogle Scholar
  67. Greene, C. and Kleitman, D.J.: The structure of Sperner k-families, J. Combin. Theory Ser. A 20(1976), 41–68.MathSciNetCrossRefGoogle Scholar
  68. Greene, C. and Kleitman, D.J.: Proof techniques in the theory of finite sets, Studies in Combinatorics (G.-C. Rota, ed.) pp. 22–79, Math. Assoc. Amer., Washington, D.C., 1978.Google Scholar
  69. Harper, L.H.: The morphology of partially ordered sets, J. Combin. Theory Ser. A 17(1974), 44–58.MathSciNetMATHCrossRefGoogle Scholar
  70. Harper, L.H. and Rota, G.-C.: Matching theory, an introduction, Advances in Probability, Vol. 1(P. Ney, ed.), pp. 169–215, Marcel Dekker, New York, 1971.Google Scholar
  71. Kahn, J.: Some non-Sperner paving matroids, Bull. London Math. Soc. 12(1980), 268.MathSciNetMATHCrossRefGoogle Scholar
  72. Peck, G.W.: On Canfield type antichains of partitions, preprint.Google Scholar
  73. Shearer, J.B.: A simple counterexample to a conjecture of Rota, Discrete Math. 28(1979), 327–330.MathSciNetMATHCrossRefGoogle Scholar
  74. Aslander, L., and H. M. Trent: Incidence matrices and linear graphs. J. Math. Mech. 8, 827–835 (1959).MathSciNetGoogle Scholar
  75. Bell, E. T.: Algebraic Arithmetic. New York: Amer. Math. Soc. (1927)MATHGoogle Scholar
  76. Bell, E. T.: Exponential polynomials. Ann. of Math., 11. Ser. 35. 258–277 (1934).CrossRefGoogle Scholar
  77. Berge, C.: Théorie des graphes et ses applications. Paris: Dounod 1958.Google Scholar
  78. Birkhoff, Garrett: Lattice Theory, third preliminary edition. Harvard University. 1963.Google Scholar
  79. Birkhoff, Garrett: Lattice Theory, revised edition. American Mathematical Society, 1948.Google Scholar
  80. Birkhoff, G. D.: A determinant formula for the number of ways of coloring a map. Ann. of Math., II. Ser. 14, 42–46 (1913).CrossRefGoogle Scholar
  81. Birkhoff, G. D., and D. C. Lewis: Chromatic polynomials. Trans. Amer. math. Soc. 60, 355–451 (1946).MathSciNetMATHGoogle Scholar
  82. Bleicher, M. N., and G. B. Preston: Abstract linear dependence relations. Publ. Math., Debrecen 8, 55–63 (1961).MathSciNetMATHGoogle Scholar
  83. Bougayev, N. V.: Theory of numerical derivatives. Moscow, 1870–1873, pp. 1–222.Google Scholar
  84. Bruijn, N. G. de: Generalization of Polya’s fundamental theorem in enumerative combinatorial analysis. Indagationes math. 21, 59–69 (1959).Google Scholar
  85. Chung, K.-L., and L. T. C. Hsu: A combinatorial formula with its application to the theory of probability of arbitrary events. Ann. math. Statistics 16, 91–95 (1945).MathSciNetMATHCrossRefGoogle Scholar
  86. Dedekind, R.: Gesammelte Mathematische Werke, volls. I-II-III. Hamburg: Deutsche Math. Verein. (1930).MATHGoogle Scholar
  87. Delsarte, S.: Fonctions de Möbius sur les groupes abéliens finis. Ann. of Math., II. Ser. 49, 600–609 (1948).MathSciNetMATHCrossRefGoogle Scholar
  88. Dilworth, R. P.: Proof of a conjecture on finite modular lattices. Ann. of Math., II. Ser. 60, 359–304 (1954).MathSciNetMATHCrossRefGoogle Scholar
  89. Dirac, G. A.: On the four-color conjecture. Proc. London math. Society, III. Ser. 13, 193 to 218 (1963).MathSciNetMATHCrossRefGoogle Scholar
  90. Dowker, C. H.: Homology groups of relations. Ann. of Math., II. Ser. 56, 84–95 (1952).MathSciNetMATHCrossRefGoogle Scholar
  91. Dubreil-Jacotin, M.-L., L. Lesieur et R. Croisot: Lecons sur la théorie des treilles des structures algebriques ordonnées et des treilles géometriques. Paris: Gauthier-Villars 1953.Google Scholar
  92. Eilenberg, S., and N. Steenrod: Foundations of algebraic topology. Princeton: University Press 1952.MATHGoogle Scholar
  93. Fary, I.: On straight-line representation of planar graphs. Acta Sci. math. Szeged 11. 229–233 (1948).MathSciNetMATHGoogle Scholar
  94. Feller, W.: An introduction to probability theory and its applications, second edition. New York: Wiley 1960.Google Scholar
  95. Franklin, P.: The four-color problem. Amer. J. Math. 44, 225–236 (1922).MathSciNetMATHCrossRefGoogle Scholar
  96. Fréchet, M.: Les probabilités associées à un système d’évenements compatibles et dépendants. Actualitées scientifiques et industrielles, nos. 859 et 942. Paris: Hermann 1940 et 1943.Google Scholar
  97. Frontera Marqués, B.: Una función numérica en los retículos finitos que se anula para los retículos reducibles. Actas de la 2a, Reunión de matemáticos españoles. Zaragoza 103–111 1962.Google Scholar
  98. Frucht, R., and G.-C. Rota: La función de Möbius para el retículo di particiones de un conjunto finito. To appear in Scientia (Chile).Google Scholar
  99. Goldberg, K., M.S. Green and R. E. Nettleton: Dense subgraphs and connectivity. Canadian J. Math. 11 (1959).Google Scholar
  100. Golomb, S. W.: A mathematical theory of discrete classification. Fourth Symposium in Information Theory, London, 1961.Google Scholar
  101. Green, M.S., and R. E. Nettleton: Möbius function on the lattice of dense subgraphs. J. Res. nat. Bur. Standards 64B, 41–47 (1962).MathSciNetGoogle Scholar
  102. Green, M.S., and R. E. Nettleton: Expression in terms of modular distribution functions for the entropy density in an infinite system. J. Chemical Physisc 29, 1365–1370 (1958).CrossRefGoogle Scholar
  103. Hadwiger, H.: Eulers Charakteristik und kombinatorische Geometrie. J. reine angew. Math. 194, 101–110 (1955).MathSciNetMATHGoogle Scholar
  104. Hall, Philip: A contribution to the theory of groups of prime power order. Proc. London math. Soc., II. Ser. 36, 39–95 (1932).Google Scholar
  105. Hall, Philip: The Eulerian functions of a group. Quart. J. Math. Oxford Ser. 134–151, 1936.Google Scholar
  106. Harary, V.: Unsolved problems in the enumeration of graphs. Publ. math. Inst. Hungar. Acad. Sci. 5, 63–95 (1960).MATHGoogle Scholar
  107. Hardy, G. H.: Ramanujan. Cambridge: University Press 1940.Google Scholar
  108. Hardy, G. H., and E. M. Wright: An introduction to the theorv of numbers. Oxford: University Press 1954.Google Scholar
  109. Hartmanis, J.: Lattice theory of generalized partitions. Canadian J. Math. 11, 97–106 (1959).MathSciNetMATHCrossRefGoogle Scholar
  110. Hille, E.: The inversion problems of Möbius. Duke math. J. 3, 549–568 (1937).MathSciNetCrossRefGoogle Scholar
  111. Hsu, L. T. C.: Abstract theory of inversion of iterated summation. Duke math. J. 14, 465 to 473 (1947).MathSciNetMATHCrossRefGoogle Scholar
  112. Hsu, L. T. C.: On Romanov’s device of orthogonalization. Sci. Rep. Nat. Tsing Hua Univ. 5, 1–12 (1948).MathSciNetGoogle Scholar
  113. Hsu, L. T. C.: Note on an abstract inversion principle. Proc. Edinburgh math. Soc (2) 9, 71–73 (1954).MathSciNetMATHCrossRefGoogle Scholar
  114. Jackson, F. H.: Series connected with the enumeration of partitions. Proc. London math. Soc., II. Ser. 1, 63–88 (1904).CrossRefGoogle Scholar
  115. Jackson, F. H.: The q-form of Taylor’s theorem. Messenger of Mathematics 38, 57–61 (1909).Google Scholar
  116. Jónsson, B.: Lattice-theoretic approach to projective and affine geometry. Symposium on the Axiomatic Method. Amsterdam, North-Holland Publishing Company, 1959, 188–205.CrossRefGoogle Scholar
  117. Jónsson, B., and A. Tarski: Direct decomposition of finite algebraic systems. Notre Dame Mathematical lectures, no. 5. Indiana: Notre Dame 1947.Google Scholar
  118. Kac, M., and J. C. Ward: A combinatorial solution of the two-dimensional Ising model. Phys. Review 88, 1332–1337 (1952).MATHCrossRefGoogle Scholar
  119. Kaplanski, I., and J. Riordan: The problème des ménages. Scripta math. 12, 113–124 (1946).MathSciNetGoogle Scholar
  120. Klee, V.: The Euler characteristic in combinatorial geometry. Amer. math. Monthly 70, 119–127 (1963).MathSciNetMATHCrossRefGoogle Scholar
  121. Lazarson, T.: The representation problem for independence functions. J. London math. Soc. 33, 21–25 (1958).MathSciNetMATHCrossRefGoogle Scholar
  122. Maclane, S.: A lattice formulation of transcendence degrees and p-bases. Duke math. J. 4, 455–468 (1938).MathSciNetMATHCrossRefGoogle Scholar
  123. MacMillan, B.: Absolutely monotone functions. Ann. of Math., II. Ser. 60, 467–501 (1954).CrossRefGoogle Scholar
  124. Möbius, A. F.: Über eine besondere Art von Umkehrung der Reihen. J. reine angew. Math. 9, 105–123 (1832).MATHCrossRefGoogle Scholar
  125. Ore, O.: Theory of graphs. Providence: American Mathematical Society 1962.MATHGoogle Scholar
  126. Polya, G.: Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Vcrbindungen. Acta math. 68, 145–253 (1937).CrossRefGoogle Scholar
  127. Rado, R.: Note on independence functions. Proc. London math. Soc., III. Ser. 7, 300–320 (1957).MathSciNetMATHCrossRefGoogle Scholar
  128. Read, R. C.: The enumeration of locally restricted graphs, I. J. London math. Soc. 34, 417 to 436 (1959).MathSciNetMATHCrossRefGoogle Scholar
  129. Redfield, J. H.: The theory of group-reduced distributions. Amer. J. Math. 49, 433–455 (1927).MathSciNetMATHCrossRefGoogle Scholar
  130. Revuz, André: Fonctions croissantes et mesures sur les espaces topologiques ordonnés. Ann. Inst. Fourier 6 187–268 (1955).MathSciNetCrossRefGoogle Scholar
  131. Riordan, J.: An introduction to combinatorial analysis. New York: Wiley 1958.Google Scholar
  132. Romanov, N. P.: On a special orthonormal system and its connection with the theory of primes. Math. Sbornik, N. S. 16, 353–364 (1945).Google Scholar
  133. Rota, G.-C.: Combinatorial theory and Möbius functions. To appear in Amer. math. Monthly.Google Scholar
  134. Rota, G.-C.: The number of partitions of a set. To appear in Amer. math. Monthly.Google Scholar
  135. Ryser, H. J.: Combinatorial Mathematics. Buffalo: Mathematical Association of America 1963.MATHGoogle Scholar
  136. Schützenberger, M. P.: Contribution aux applications statistiques de la théorie de l’information. Publ. Inst. Stat. Univ. Paris, 3, 5–117 (1954).Google Scholar
  137. Tarski, A.: Ordinal algebras. Amsterdam: North-Holland Publishing Company 1956.MATHGoogle Scholar
  138. Touchard, J.: Sur un problème de permutations. C. r. Acad. Sci., Paris, 198, 631–633 (1934).Google Scholar
  139. Tutte, W. T.: A contribution to the theory of chromatic polynomials. Canadian J. Math. 6, 80–91 (1953).MathSciNetCrossRefGoogle Scholar
  140. Tutte, W. T.: A class of Abelian group. Canadian J. Math. 8, 13–28 (1950).MathSciNetCrossRefGoogle Scholar
  141. Tutte, W. T.: A homotopy theorem for matroids. I. and II. Trans. Amer. math. Soc. 88, 144–140 (1958).MathSciNetMATHGoogle Scholar
  142. Tutte, W. T.: Matroids and graphs. Trans. Amer. math. Soc. 90, 527–552 (1959).MathSciNetMATHCrossRefGoogle Scholar
  143. Ward, M.: The algebra of lattice functions. Duke math. J. 5, 357–371 (1939).MathSciNetCrossRefGoogle Scholar
  144. Weisser, L.: Abstract theory of inversion of finite series. Trans. Amer. math. Soc. 38. 474–484 (1935).MathSciNetCrossRefGoogle Scholar
  145. Weisser, L.: Some properties of prime-power groups. Trans. Amer. math. Soc. 38, 485–492 (1935).MathSciNetCrossRefGoogle Scholar
  146. Whitney, H.: A logical expansion in mathematics. Bull. Amer. math. Soc. 38, 572–579 (1932).MathSciNetCrossRefGoogle Scholar
  147. Whitney, H.: Characteristic functions and the algebra of logic. Ann. of Math., II. Ser. 34, 405–414 (1933).MathSciNetCrossRefGoogle Scholar
  148. Whitney, H.: The abstract properties of linear dependence. Amer. J. Math. 57, 507–533 (1935).MathSciNetCrossRefMATHGoogle Scholar
  149. Wielandt, H.: Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen eincr endlichen Gruppe. Math. Z. 73, 140–158 (1960).Google Scholar
  150. Wintner, A.: Eratosthenian Averages. Baltimore (privately printed) 1943.Google Scholar
  151. [1]
    Eilenberg, S., & N. E. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, New Jersey, 1952.MATHGoogle Scholar
  152. [2]
    Rota, Gian-Carlo, On the Foundations of Combinatorial Theory, I. Theory of Möbius Functions, Zeitschrift für Wahrsheinlichkeitstheorie und Verwandte Gebiete, 2(1964) 340–368.MathSciNetMATHCrossRefGoogle Scholar
  153. [1]
    Garrett Birkhoff, Lattice Theory, Third Edition (American Mathematical Society, 1967).Google Scholar
  154. [2]
    Henry Crapo, The Möbius Function of a Lattice, J. Combinatorial Theory 1 (1966), 126–131.MathSciNetMATHCrossRefGoogle Scholar
  155. [3]
    Henry Crapo, and Gian-Carlo Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, M.I.T. Press.Google Scholar
  156. [4]
    Gian-Carlo Rota, On the Foundations of Combinatorial Theory, I: Theory of Möbius Functions, Z. Wahrscheinlichkeitstheorie 2 (1964), 340–368.MathSciNetMATHCrossRefGoogle Scholar
  157. 1.
    E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544–548.MathSciNetMATHCrossRefGoogle Scholar
  158. 2.
    L. H. Harper, The Morphology of Geometric Lattices (to appear).Google Scholar
  159. 3.
    K. A. Baker, A Generalization of Sperner’s Lemma (to appear).Google Scholar
  160. 4.
    J. E. McLaughlin, Structure Theorems for Relatively Complemented Lattices, Pacific J. Math. 3 (1953), 197–208.MathSciNetMATHCrossRefGoogle Scholar
  161. 1.
    J. G. Basterfield and L. M. Kelly, A characterization of sets of n points which determine n hyperplanes, Proc. Cambridge Philos. Soc. 64(1968), 585–588. MR 38 #2040.MathSciNetMATHCrossRefGoogle Scholar
  162. 2.
    J. E. Blackburn, H. H. Crapo and D. A. Higgs, A catalogue of combinatorial geometries, University of Waterloo, Waterloo, Ontario, 1969.Google Scholar
  163. 3.
    G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638.Google Scholar
  164. 4.
    H. H. Crapo and G.-C. Rota, On the foundations of combinatorial theory: Combinatorial geometries, M. I. T. Press, Cambridge, Mass., 1970. (preliminary edition). MR 45 #74.MATHGoogle Scholar
  165. 5.
    R. P. Dilworth, Proof of a conjecture on finite modular lattices, Ann. of Math. (2) 60 (1954), 359–364. MR 16, 106.MathSciNetMATHCrossRefGoogle Scholar
  166. 6.
    T. A. Dowling and R. M. Wilson, The slimmest geometric lattices, Trans. Amer. Math. Soc. 196(1974), 203–215.MathSciNetMATHCrossRefGoogle Scholar
  167. 7.
    C. Greene, A rank inequality for finite geometric lattices, J. Combinatorial Theory 9 (1970), 357–364. MR 42 #1727.MathSciNetMATHCrossRefGoogle Scholar
  168. 8.
    C. Greene, Inequalities for geometric lattices, Proc. Conf. on Möbius Algebras (H. Crapo and G. Roulet, editors), University of Waterloo, Waterloo, Ont., 1971.Google Scholar
  169. 9.
    L. H. Harper, Stirling behaviour is asymptotically normal, Ann. Math. Statist. 38 (1967), 410–414. MR 35 #2312.MathSciNetMATHCrossRefGoogle Scholar
  170. 10.
    D. G. Kelly, Disjoining permutations in finite boolean algebras, Utilitas Mathematica 3 (1973), 65–74.MathSciNetMATHGoogle Scholar
  171. 11.
    E. Lieb, Concavity properties and a generating function for Stirling numbers, J. Combinatorial Theory 5 (1968), 203–206. MR 37 #6195.MathSciNetMATHCrossRefGoogle Scholar
  172. 12.
    G.-C. Rota, On the foundations of combinatorial theory. I: Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368. MR 30 #4688.MathSciNetMATHCrossRefGoogle Scholar
  173. 13.
    P. Young, U. S. R. Murty and J. Edmonds, Equicardinal matroids and matroid designs, Proc. Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, University of North Carolina, Chapel Hill, N. C., 1970.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Gian-Carlo Rota
    • 1
  • Jon Folkman
    • 2
  • Richard P. Stanley
    • 3
  • R. P. Dilworth
    • 4
  • Curtis Greene
    • 4
  • Thomas A. Dowling
    • 5
  • Richard M. Wilson
    • 5
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridge 39USA
  2. 2.The Rand CorporationSanta MonicaUSA
  3. 3.M.I.T.CambridgeUSA
  4. 4.California Institute of TechnologyPasadenaUSA
  5. 5.Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations