Material and Structure Factors Affecting the Large-Signal Operation of GaAs Mesfets

  • P. H. Ladbrooke
  • A. L. Martin


For typical recessed-gate FET structures, the drain characteristics at high drain voltages exhibit, to one degree or another, an increase in drain current for gate voltages where the channel would ordinarily be pinched off. In some devices, this ‘soft’ current is observed to depend on the speed of the bias sweep or pulse (80μs, 50 Hz) used to measure it. One possible consequence of soft breakdown is that it may restrict the available voltage swing across the device, and hence the r.f. power available in microwave circuit applications. It is shown that some features of the breakdown characteristic are consistent with the existence of deep levels in the n-channel and buffer epitaxial layers. Capacitance transient measurements upon finished FET structures reveal the presence of deep levels at concentrations above 1015 cm-3.


Buffer Layer Deep Level Gate Voltage Drain Characteristic Slow Sweep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hower, P.L., Hooper, W.W., Tremere, D.A., Lehrer, W. and Bittman, C.A. (1969). Inst. Phys. Conf. Ser., 7, 187Google Scholar
  2. 2.
    Yokoyama, N., Shibatomi, A., Ohkawa, S., Fukuta, M. and Ishikawa, H. (1977). Inst. Phys. Conf. Ser., 33b, 201Google Scholar
  3. 3.
    Houng, Y.M. and Pearson, G.L. (1978). J. Appl. Phys., 49, 3348CrossRefGoogle Scholar
  4. 4.
    Yamamoto, R., Higashisaka, A. and Hasegawa, F. (1978). IEEE Trans. Electron. Dev., ED—25, 567CrossRefGoogle Scholar
  5. 5.
    Dilorenzo, J.V. and Wisseman, W.R. (1979). IEEE Trans. Microwave Theory and Techniques, MTT—27, 367CrossRefGoogle Scholar
  6. 6.
    Crossley, I., Goodridge, I.H., Cardwell, M.J. and Butlin, R.S. (1977). Inst. Phys. Conf. Ser., 33b, 289Google Scholar
  7. 7.
    Rode, D.L., Schwartz, B. and Dilorenzo, J.V. (1974). Solid St. Electron., 17, 1119CrossRefGoogle Scholar
  8. 8.
    Abbott, D.A. and Turner, J.A. (1976). IEEE Trans. Microwave Theory and Techniques, MTT—24, 317CrossRefGoogle Scholar
  9. 9.
    Furutsuka, T., Tsuji, T. and Hasegawa, F. (1978). Trans. IEEE Electron. Dev., ED—25, 563CrossRefGoogle Scholar
  10. 10.
    Senechal, R.R. and Basinski, J. (1968). J. Appl. Phys., 39, 4581CrossRefGoogle Scholar
  11. 11.
    Lang, D.V. (1974). J. Appl. Phys., 45, 3023CrossRefGoogle Scholar
  12. 12.
    Forbes, L. and Kaempf, U. (1979). Hewlett Packard Journal, 30, 29Google Scholar
  13. 13.
    Martin, G.M., Mitonneau, A. and Mircea, A. (1977). Electron. Lett., 13, 192CrossRefGoogle Scholar
  14. 14.
    White, P.M. Private communicationGoogle Scholar

Copyright information

© P.H. Ladbrooke and A.L. Martin 1980

Authors and Affiliations

  • P. H. Ladbrooke
    • 1
  • A. L. Martin
    • 1
    • 2
  1. 1.Department of Solid-State ElectronicsUniversity of New South WalesKensingtonAustralia
  2. 2.Solid-State and Quantum Electronics GroupTelecom Australia Research LaboratoryClaytonAustralia

Personalised recommendations