Complexes and their Effects on III—V Compounds

  • Max N. Yoder


The degree and type of activation of any given impurity in III–V compounds is noted to be significantly affected by the presence of other selected impurities within the host material. Certain impurity combinations are believed to favour the formation of electrically active complexes; other complexes can be formed which are electrically neutral. Selected impurities are thought to be capable of breaking previously formed complexes and substituting new complexes. Other impurities, while not capable of breaking previously formed complexes, are noted to prevent the further formation of these same complexes. Neutral complexes in insulating material may be electrically activated by impurities capable of breaking these complexes; thus, insulating III–V materials must be carefully qualified by screening for these delitescent conditions. Heuristic examples are given.


Neutral Complex GaAs Crystal Background Impurity Ionicity Factor Electro Negativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Donnelly, J.P., Bozler, C.O. and Lindley, W.T (1977). Solid St. Electron., 20, 273CrossRefGoogle Scholar
  2. 2.
    Favennec, P.N., Henry, L. and L’Haridon, H. (1978). Solid St. Electron., 21, 705CrossRefGoogle Scholar
  3. 3.
    Peart, R.F., Weiser, K., Woodall, J. and Fern, R. (1966). Appl. Phys. Lett., 9, 200CrossRefGoogle Scholar
  4. 4.
    Magee, T.J., Peng, J., Hong, J.D., Evans, C.A. Jr, Deline, V.R and Malbon, R.M. (1979). Appl. Phys. Lett., 35, 277CrossRefGoogle Scholar
  5. 5.
    Magee, T.J., Peng, J., Hong, J.D., Deline, V.R. and Evans, C.R. Jr (1979). Appl. Phys. Lett., 35, 615CrossRefGoogle Scholar
  6. 6.
    Evans, C.A., Deline, V.R. and Sigmon, T.W. (1979). GaAs IC Symposium, Lake Tahoe, Nevada. Research Abstracts Paper No. 15Google Scholar
  7. 7.
    Anderson, W.T., Christou, A. and Davey, J. (1978). IEEE J. Solid State Circuits, SC-13, 430Google Scholar
  8. 8.
    Collins, D.M. (1979). Appl Phys. Lett., 35, 67CrossRefGoogle Scholar
  9. 9.
    Spitzer, W.G. and Allred, W.P. (1968). J. Appl. Phys., 39, 4999CrossRefGoogle Scholar
  10. 10.
    Vaidyanathan, K.V., Anderson, C.L., Dunlap, H.L., Kamath, G.S. and Krumm, C.F. (1979). GaAs IC Symposium, Lake Tahoe, Nevada. Research Abstracts Paper No. 17Google Scholar
  11. 11.
    Oakes, J.G., Degenford, J.E. and Eldridge, G. (1980). GaAs Monolithic Microwave Subsystem Technology, Base Report N00014–78-C-0268, Westinghouse Electric, 7.1Google Scholar
  12. 12.
    Rao, E.V.K, Duhamel, N., Favennec, P.N. and L’Haridon, H. (1976). Ion Implantation in Semiconductors, p. 77. New York; Plenum PressGoogle Scholar
  13. 13.
    Berman, L.V., Solov’ena, E.V., Mil’vidskii, M.G., Nazhivina, L.N. and Sabanova, L.D. (1979). Sov. Phys. Semicond., 13, 388Google Scholar
  14. 14.
    Evans, C.A. Private communicationGoogle Scholar
  15. 15.
    Kung, J.K. and Spitzer, W.G. (1974). J. Appl. Phys., 45, 2254CrossRefGoogle Scholar
  16. 16.
    Stolte, C.A. (1975). Technical Digest, IEEE IEDM, p. 585Google Scholar

Copyright information

© M.N Yoder 1980

Authors and Affiliations

  • Max N. Yoder
    • 1
  1. 1.Office of Naval ResearchArlingtonUSA

Personalised recommendations