Advertisement

Activation of Cr1+ (3d5) Level in GaAs:Cr Induced by Hydrostatic Pressure

  • A. M. Hennel
  • W. Szuszkiewicz
  • G. Martinez
  • B. Clerjaud
  • A. M. Huber
  • G. Morillot
  • P. Merenda

Abstract

The absorption spectrum of n-type GaAs:Cr, in which the Cr2+ EPR signal remains stable under illumination, was measured under hydrostatic pressure up to 10 kbar at liquid nitrogen temperature. The intracentre Cr2+ transition (5T25E) disappears with increasing pressure; simultaneously, a rapid rise in resistivity is observed. These results can be explained by the existence of the Cr1+ level in the conduction band. Under hydrostatic pressure, this level lowers relative to the conduction band minimum and its population increases, i.e. conduction electrons are trapped by Cr2+ centres. Above 9 kbar the saturation of the observed effects appears, indicating that at this pressure the Cr1+ level is below the conduction band. This observation locates the Cr1+ level no higher than 100 meV above the conduction band minimum at 77 K, i.e. about 1.6 eV above the valence band maximum.

Keywords

Conduction Band Hydrostatic Pressure Liquid Nitrogen Temperature Chromium Concentration Valence Band Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bois, D. and Pinard, P. (1974). Phys. Rev. B, 9, 4171CrossRefGoogle Scholar
  2. 2.
    Clerjaud, B., Hennel, A.M. and Martinez, G. (1980). Solid St. Commun., 33, 983CrossRefGoogle Scholar
  3. 3.
    Huber, A.M., Morillot, G. and Merenda, P. (1979). J. Microsc. Spectrosc. Electron., 4, 493Google Scholar
  4. 4.
    Hennel, A.M., Szuszkiewicz, W., Balkanski, M., Martinez, G. and Clerjaud, B. (1980). To be publishedGoogle Scholar
  5. 5.
    Dahan, N., Barrau, B., Pinzutti, G. and Martinez, G. (1980). To be publishedGoogle Scholar
  6. 6.
    Kaufmann, U. and Schneider, J. (1976). Solid St. Commun., 20, 143CrossRefGoogle Scholar
  7. 7.
    Krebs, J.J. and Stauss, G.H. (1977). Phys. Rev. B, 16, 971CrossRefGoogle Scholar
  8. 8.
    Kaufmann, U. and Schneider, J. (1980). Appl. Phys. Lett., 36, 747CrossRefGoogle Scholar

Copyright information

© A.M. Hennel, W. Szuszkiewicz, G. Martinez, B. Clerjaud, A.M. Huber, G. Morillot and P. Merenda 1980

Authors and Affiliations

  • A. M. Hennel
    • 1
    • 2
  • W. Szuszkiewicz
    • 1
    • 2
  • G. Martinez
    • 1
  • B. Clerjaud
    • 1
    • 3
  • A. M. Huber
    • 1
    • 4
  • G. Morillot
    • 1
    • 4
  • P. Merenda
    • 1
    • 4
  1. 1.Laboratoire de Physique des Solides associé au CNRSUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Institute of Experimental PhysicsWarsaw UniversityWarszawaPoland
  3. 3.Laboratoire de Luminescence II, Equipe de Recherche associée au CNRSUniversité Pierre et Marie CurieParis Cedex 05France
  4. 4.Thomson-CSF-LCROrsayFrance

Personalised recommendations