Correlation Between EPR Assessed Cr2+ and Electrical Compensation in Semi-Insulating GaAs:Cr

  • A. Goltzene
  • C. Schwab
  • G. M. Martin


A set of different samples of semi-insulating GaAs:Cr has been assessed independently for their Cr content using EPR measurements, and for their electrically active centres derived from experiments combining Hall, DLTS and optical absorption measurements. In the dark, only Cr2+ centres were observed by EPR whereas Cr3+ signals were always negligible and Cr1+ signals could never be observed. The Cr2+ concentration increases with the residual concentration of shallow donors (ND¯NA) and of a deep donor, probably the ‘pseudo-oxygen’ defect or EL2, thus indicating that compensation occurs by trapping of free electrons on the Cr3+ ions. The residual concentration of EL2 is found to be of the order of 1016 cm-3, in agreement with former evaluations. Furthermore, at 4.2 K the EL2 level lies above the Cr acceptor level.


Electron Paramagnetic Resonance Residual Concentration Shallow Donor Electron Paramagnetic Resonance Measurement Deep Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krebs, J.J. and Stauss, G.H. (1976). Bull. Amer. Phys. Soc., 21, 89Google Scholar
  2. 2.
    Kaufmann, U. and Schneider, J. (1976). Solid St. Commun., 20, 143CrossRefGoogle Scholar
  3. 3.
    Stauss, G.H. and Krebs, J.J. (1977). Inst. Phys. Conf. Ser., 33a, 84Google Scholar
  4. 4.
    Krebs, J.J. and Stauss, G.H. (1977). Phys. Rev. B, 15, 17CrossRefGoogle Scholar
  5. 5.
    Krebs, J.J. and Stauss, G.H. (1977). Phys. Rev. B, 16, 971CrossRefGoogle Scholar
  6. 6.
    Stauss, G.H., Krebs, J.J., Lee, S.H. and Swiggard, E.M. (1979). J. Appl. Phys., 50, 6251CrossRefGoogle Scholar
  7. 7.
    Goltzené, A., Poiblaud, G. and Schwab, C. (1979). J. Appl. Phys., 50, 5425CrossRefGoogle Scholar
  8. 8.
    Goltzené, A., Poiblaud, G. and Schwab, C. (1980). Rev. Phys. Appl., 15, in pressGoogle Scholar
  9. 9.
    Woods, J.F. and Ainslie, N.G. (1963). J. Appl. Phys., 34, 1469CrossRefGoogle Scholar
  10. 10.
    Swiggard, E.M., Lee, S.H. and von Batchelder, F.W. (1977). Inst. Phys. Conf. Ser., 33b, 23Google Scholar
  11. 11.
    Martin, G.M., Farges, J.P., Jacob, G., Hallais, J.P. and Poiblaud, G. (1980). To be published in J. Appl. Phys. Google Scholar
  12. 12.
    von Bardeleben, H.J., Schwab, C. and Goltzené, A. (1975). Phys. Lett., 51A, 460Google Scholar
  13. 13.
    Kaufmann, U. (1975). Phys. Rev. B, 11, 2478CrossRefGoogle Scholar
  14. 14.
    Troeger, G.L., Rogers, R.N. and Kasper, H.M. (1975). J. Phys. C: Solid St. Phys., 8, L222CrossRefGoogle Scholar
  15. 15.
    Mitonneau, A., Mircea, A., Martin, G.M. and Pons, D. (1979). Rev. Phys. Appl., 14, 853CrossRefGoogle Scholar
  16. 16.
    Huber, A.M., Linh, N.T., Valadon, M., Debrun, J.C., Martin, G.M., Mitonneau, A. and Mircea, A. (1979). J. Appl. Phys., 50, 4022CrossRefGoogle Scholar
  17. 17.
    Martin G.M., Verheijke, M.L., Jansen, J.A.J. and Poiblaud, G. (1979). J. Appl. Phys., 50, 467CrossRefGoogle Scholar
  18. 18.
    Martin, G.M. (1980). This volumeGoogle Scholar
  19. 19.
    Martin, G.M., Mitonneau, A., Pons, D., Mircea, A. and Woodard, D.W. (1980). To be published in J. Phys. C: Solid St. Phys. Google Scholar
  20. 20.
    White, A.M. (1979). Solid St. Commun., 32, 205CrossRefGoogle Scholar
  21. 21.
    Picoli, G., Deveaud, B. and Galland, D. (1980). This volumeGoogle Scholar

Copyright information

© A. Goltzené, C. Schwab and G.M. Martin 1980

Authors and Affiliations

  • A. Goltzene
    • 1
  • C. Schwab
    • 1
  • G. M. Martin
    • 1
    • 2
  1. 1.Laboratoire de Spectroscopic et d’Optique du Corps Solide, Associé au CNRS No. 232Université Louis PasteurStrasbourgFrance
  2. 2.Laboratoire d’Electronique et de Physique AppliquéeLimeil-BrevannesFrance

Personalised recommendations