Photoluminescence and Photoconductivity Study of the 1.10 eV Energy Level in Fe-Doped InP

  • Phil Won Yu


Photoluminescence and photoconductivity measurements in Fe-doped high-resistivity InP have been performed in the temperature range 4–300 K. Particular emphasis was placed on the explanation of the 1.06 eV emission. The emission spectrum has phonon structure at lower temperatures. The observed band shape and peak position are well explained by the configuration co-ordinate model. A nearest neighbour molecular-like centre (Fe)In— (V)p is responsible for the 1.06 eV emission as well as the ~ 1.10 eV emission present in doped and undoped InP. Both d.c. and a.c. photoconductivity spectra show a strong photoconductivity onset at 1.1–1.2 eV for T=7–300 K. This onset can be ascribed to the defect centre (Fe)In-(V)p which has a carrier trapping level of 0.24 eV.


Phonon Energy Defect Centre Zero Phonon Line Photoconductivity Spectrum Intracentre Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ippolitova, G.K., Omel’yanovskii, E.M., Pavlov, N.M., Nashel’skii, A.Ya. and Yakobson, S.V. (1977). Sov. Phys. Semicond., 11, 773Google Scholar
  2. 2.
    Koschel, W.H., Kaufmann, H. and Bishop, S.G. (1977). Solid St. Commun., 21, 1069CrossRefGoogle Scholar
  3. 3.
    Mizuno, O. and Watanabe, H. (1915).Elctron. Lett., 11, 118CrossRefGoogle Scholar
  4. 4.
    Iseler, G.W. (1979). Inst. Phys. Conf. Ser., 45, 144Google Scholar
  5. 5.
    Look, D.C. (1979). Phys. Rev. B, 20, 4160CrossRefGoogle Scholar
  6. 6.
    Mullin, J.B., Royle, A., Straughan, B.W., Tufton, P.J. and Williams, E.W. (1972). J. Crystal Growth, 13/14, 640CrossRefGoogle Scholar
  7. 7.
    Williams, E.W., Elder, W., Astles, M.G., Webb, M., Mullin, J.B., Straughan, B.W. and Tufton, P.J. (1973). J. Electrochem. Soc., 12, 1741CrossRefGoogle Scholar
  8. 8.
    Roder, O., Heim, U. and Pilkuhn, M.H. (1970). J. Phys. Chem. Solids, 31, 2625CrossRefGoogle Scholar
  9. 9.
    Chiao, S.H. and Antypas, G.A. (1978). J. Appl. Phys., 49, 466CrossRefGoogle Scholar
  10. 10.
    Demberel, L.A., Papov, A.S., Kushev, D.B. and Zheleva, N.N. (1979). Phys. Stat. Sol. (a), 52, 341CrossRefGoogle Scholar
  11. 11.
    Kawamura, Y., Ikeda, M., Asahi, H. and Okamoto, H. (1979). Appl. Phys. Lett., 35, 481CrossRefGoogle Scholar
  12. 12.
    Borcherds, P.H., Alfrey, G.H., Saunderson, D.H. and Woods, A.D.B. (1975). J. Phys. C.: Solid St. Phys., 8, 2022CrossRefGoogle Scholar
  13. 13.
    Keil, T.H. (1965). Phys. Rev. A, 140, 601Google Scholar
  14. 14.
    Fung, S., Nicholas, R.J. and Stradling, R.A. (1979). J. Phys. C.: Solid St. Phys., 12, 5145CrossRefGoogle Scholar

Copyright information

© Phil Won Yu 1980

Authors and Affiliations

  • Phil Won Yu
    • 1
  1. 1.Physics DepartmentUniversity of DaytonDaytonUSA

Personalised recommendations