Skip to main content

Circumventricular Organs and Cardiovascular Homeostasis

  • Chapter
Central Neural Mechanisms in Cardiovascular Regulation

Abstract

Since the first anatomical description of the circumventricular organs (CVOs) as a structurally distinct group of regions in the central nervous system (CNS), a rapidly emerging body of evidence has implicated the CVOs as physiologically significant autonomic control centers located at the blood-brain interface. Specialized features of these structures such as their extensive vasculature and lack of the normal blood-brain barrier (i. e., capillaries have a fenestrated endothelium) support an involvement of the CVOs in blood-brain communication. Such information transfer could potentially be from blood to neuron, from neuron to blood, or conceivably between cerebrospinal fluid and either the circulation or neurons. The median eminence and neurohypophysis provide persuasive examples of CVOs in which the primary direction of communication is apparently from neural tissue (hypothalamic neurosecretory neurons) to the circulation. Within such a framework, the lack of the normal blood-brain barrier presumably facilitates diffusion of released hypothalamic peptides from axonal terminals into the blood stream following secretion. The major role of such CVOs in cardiovascular regulation is thus related to the specific hormones released at these regions (e. g., vasopressin and corticotropin-releasing hormone) and their endocrine functions in control of the circulation. Such information is the subject of several excellent reviews (Cowley, 1988; Bisset and Chowdrey, 1988), and so will not be considered in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Applegate RJ, Hasser EM, Bishop VS (1987): Vagal cold block in area postrema lesioned dogs: Interaction of vasopressin and sympathetic nervous system. Am J Physiol 252:H135–H141

    Google Scholar 

  • Averill DB, Diz DI, Barnes KL, Ferrario CM (1987): Pressor responses of angiotensin II microinjected into the dorsomedial medulla of the dog. Brain Res 414:294–300

    Google Scholar 

  • Barnes KL, Ferrario CM, Conomy JP (1979): Comparison of the hemodynamic changes produced by electrical stimulation of the area postrema and nucleus tractus solitarii in the dog. Circ Res 45:136–143

    Google Scholar 

  • Bergmann GH (1831): Neve untersuchungen uber die innere organisation des Gehirns. Helwing p. 93

    Google Scholar 

  • Bickerton RK, Buckley JP (1961): Evidence for a central mechanism in angiotensin induced hypertension. Proc Soc Exp Biol 106:834–836

    Google Scholar 

  • Bisset GW, Chowdrey HS (1988): Control of release of vasopressin by neuroendocrine reflexes. Q J Exp Physiol 73:811–872

    Google Scholar 

  • Borison HL (1974): Area postrema: Chemoreceptor trigger zone for vomiting—is that all? Life Sci 14:1807–1817

    Google Scholar 

  • Borison HL, Borison R, McCarthy LE (1984): Role of the area postrema in vomiting and related functions. Fed Proc 43:2955–2958

    Google Scholar 

  • Borison HL, Brizzee KR (1951): Morphology of emetic chemoreceptor trigger zone in cat medulla oblongata. Proc Soc Exp Biol Med 77:38–42

    Google Scholar 

  • Brizzee BL, Walker BR (1990): Vasopressinergic augmentation of cardiac baroreceptor reflex in conscious rats. Am J Physiol 258:R860–R88

    Google Scholar 

  • Brody MJ (1988): Central nervous system and mechanisms of hypertension. Clin Physiol Biochem 6:230–239

    Google Scholar 

  • Brody MJ, Johnson AK (1980): Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension. In: Frontiers in Endocrinology, Martini L, Ganong WF, eds. New York: Raven Press

    Google Scholar 

  • Cammermeyer J (1947): Is the human area postrema a neuro-vegetative nucleus? Acta Anat 2:294–320

    Google Scholar 

  • Carpenter DO, Briggs DB, Knox AP, Strominger N (1988): Excitation of area postrema neurons by transmitters, peptides, and cyclic nucleotides. J Neurophysiol 59:358–369

    Google Scholar 

  • Carpenter DO, Briggs DB, Strominger N (1984): Behavioral and electrophysiological studies of peptide-induced emesis in dogs. Fed Proc 43:2952–2954

    Google Scholar 

  • Casto R, Phillips I (1984): Cardiovascular actions of microinjections of angiotensin II in the brain stem of rats. Am J Physiol 246:R811–R816

    Google Scholar 

  • Castren E, Saavedra JM (1989): Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized, and vasopressin-deficient rats. Proc Natl Acad Sci USA 86:725–729

    Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978): Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178:1–16

    Google Scholar 

  • Ciriello J, Hrycyshyn AW, Calaresu FR (1981): Horseradish peroxidase study of brain stem projections of carotid sinus and aortic depressor nerves in the cat. J Auton Nerv Syst 4:43–61

    Google Scholar 

  • Ciriello J, Kline RL, Zhang TX, Caverson MM (1984): Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Res 310:355–359

    Google Scholar 

  • Ciriello J, Macchi A, Caverson MM (1986): Lesions of the subfornical organ (SFO) attenuate the increase in arterial pressure after aortic baroreceptor denervation. Fed Proc 45:876

    Google Scholar 

  • Contreras RJ, Beckstead RM, Norgren R (1982): The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J Auton Nerv Syst 6:303–322

    Google Scholar 

  • Cowley AW Jr (1988): Vasopressin and blood pressure regulation. Clin Physiol Biochem 6:150–162

    Google Scholar 

  • Davies RO, Kalia M (1981): Carotid sinus nerve projections to the brain stem in the cat. Brain Res Bull 6:531–541

    Google Scholar 

  • Dellman HD, Simpson JB (1979): The subfornical organ. Int Rev Cytol 58:333–421

    Google Scholar 

  • Donevan SD, Ferguson AV (1988): Subfornical organ and cardiovascular influences on identified septal neurons. Am J Physiol 254:R544–R551

    Google Scholar 

  • Faraci FM, Choi J, Baumbach GL, Mayhan WG, Heistad DD (1989): Microcirculation of the area postrema. Permeability and vascular responses. Circ Res 65:417–425

    Google Scholar 

  • Feiten DL, Harrigan P, Burnett BT, Cummings JP (1981): Fourth ventricular tanycytes: A possible relationship with monoaminergic nuclei. Brain Res Bull 6:427–436

    Google Scholar 

  • Ferguson AV (1988): Paraventricular nucleus neurons projecting to the dorsomedial medulla are influenced by systemic angiotensin. Brain Res Bull 20:197–201

    Google Scholar 

  • Ferguson AV, Bourque CW, Renaud LP (1985): Subfornical organ and supraoptic nucleus connections with septal neurons in rats. Am J Physiol 249:R214–R218

    Google Scholar 

  • Ferguson AV, Day TA, Renaud LP (1984a): Subfornical organ efferents influence the excitability of neurohypophysial and tuberoinfundibular paraventricular nucleus neurons in the rat. Neuroendocrinology 39:423–428

    Google Scholar 

  • Ferguson AV, Day TA, Renaud LP (1984b): Subfornical organ stimulation excites paraventricular neurons projecting to the dorsal medulla. Am J Physiol 247:R 1088–R1092

    Google Scholar 

  • Ferguson AV, Kasting NW (1986): Electrical stimulation in the subfornical organ increases plasma vasopressin concentrations in the conscious rat. Am J Physiol 251:R712–717

    Google Scholar 

  • Ferguson AV, Marcus P (1988): Area postrema stimulation induced cardiovascular changes in the rat. Am J Physiol 255:R855–R860

    Google Scholar 

  • Ferguson AV, Renaud LP (1984): Hypothalamic paraventricular nucleus lesions decrease pressor responses to subfornical organ stimulation. Brain Res 305:361–364

    Google Scholar 

  • Ferguson AV, Smith P (1990): Cardiovascular responses induced by endothelin microinjection into area postrema. Reg Peptides 27:75–85

    Google Scholar 

  • Ferguson AV, Smith P (1991a): Circulating endothelin influences area postrema neurons. Reg Peptides 32:11–21

    Google Scholar 

  • Ferguson AV, Smith P (1991b): Autonomic mechanisms underlying area postrema stimulation-induced cardiovascular responses in rats. Am J Physiol 261:R1–R8

    Google Scholar 

  • Ferrario CM (1983): Central nervous system mechanisms of blood pressure control in normotensive and hypertensive states. Chest 83(Suppl):331–335

    Google Scholar 

  • Ferrario CM, Barnes KL, Szilagyi JE, Brosnihan KB (1979): Physiological and pharmacological characterization of the area postrema pressor pathways in the normal dog. Hypertension 1:235–245

    Google Scholar 

  • Ferrario CM, Gildenberg PL, McCubbin JW (1972): Cardiovascular effects of angiotensin mediated by the central nervous system. Circ Res 30:257–262

    Google Scholar 

  • Fink GD, Bruner CA, Mangiapane ML (1987a): Area postrema is critical for angiotensin-induced hypertension in rats. Hypertension 9:355–361

    Google Scholar 

  • Fink GD, Bruner CA, Pawloski CM, Blair ML, Skoog KM, Mangiapane ML (1986): Role of the area postrema in hypertension after unilateral artery constriction in the rat. Fed Proc 45:875

    Google Scholar 

  • Fink GD, Pawloski CM, Blair ML, Mangiapane ML (1987b): The area postrema in deoxycorticosterone-salt hypertension in rats. Hypertension 9(Suppl III):III206–III209

    Google Scholar 

  • Fitzsimons JT (1980): Angiotensin stimulation of the central nervous system. Rev Physiol Biochem Pharmacol 87:117–167

    Google Scholar 

  • Ganong WF (1987): Review of Medical Physiology. East Norwalk: Appleton and Lange

    Google Scholar 

  • Gatti PJ, Dias Souza J, Gillis RA (1988): Increase in coronary vascular resistance produced by stimulating neurons in the region of the area postrema of the cat. Brain Res 448:313–319

    Google Scholar 

  • Gehlert DR, Gackenheimer SL, Schober DA (1991): Autoradiographic localization of subtypes of angiotensin II antagonist binding in the rat brain. Neuroscience 44(no.2):501–514

    Google Scholar 

  • Gehlert DR, Speth RC, Wamsley JK (1986): Distribution of [125I] angiotensin II binding sites in the rat brain: a quantitative autoradiographic study. Neuroscience 18:837–856

    Google Scholar 

  • Gross PM, Kadekaro M, Andrews DW, Sokoloff L, Saavedra JM (1985): Selective metabolic stimulation of the subfornical organ and pituitary neural lobe by peripheral angiotensin II. Peptides 6:145–152

    Google Scholar 

  • Gross PM, Wainman DS, Shaver SW, Wall KM, Ferguson AV (1990): Metabolic activation of efferent pathways from the rat area postrema. Am J Physiol 258:R788–R797

    Google Scholar 

  • Gutman MB, Ciriello J, Mogenson GJ (1985): The effect of paraventricular nucleus lesions on cardiovascular responses elicited by stimulation of the subfornical organ in the rat. Can J Physiol Pharmacol 63:816–824

    Google Scholar 

  • Gutman MB, Jones DL, Ciriello J (1989): Contribution of nucleus medianus to the drinking and pressor responses to angiotensin II acting at subfornical organ. Brain Res 488:49–56

    Google Scholar 

  • Hasser EM, Nelson DO, Haywood JR, Bishop VS (1987): Inhibition of renal sympathetic nervous activity by area postrema stimulation in rabbits. Am J Physiol 253:H91–H99

    Google Scholar 

  • Haywood JR, Fink GD, Buggy J, Phillips MI, Brody MJ (1980): The area postrema plays no role in the pressor action of angiotensin in the rat. Am J Physiol 239:H108–H113

    Google Scholar 

  • Iovino M, Papa M, Monteleone P, Steardo L (1988): Neuroanatomical and biochemical evidence for the involvement of the area postrema in the regulation of vasopressin release in rats. Brain Res 447:178–182

    Google Scholar 

  • Iovino M, Steardo L (1985): Thirst and vasopressin secretion following central administration of angiotensin II in rats with lesions of the septal area and subfornical organ. Neuroscience 15:61–67

    Google Scholar 

  • Jhamandas JH, Lind RW, Renaud LP (1989): Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamic supraoptic nucleus: An anatomical and electrophysiological study in the rat. Brain Res 487:52–61

    Google Scholar 

  • Jhamandas JH, Renaud LP (1986): Diagonal band neurons may mediate arterial baroreceptor input to hypothalamic vasopressin-secreting neurons. Neurosci Lett 65:214–218

    Google Scholar 

  • Johnson AK (1985): The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res Bull 15:595–601

    Google Scholar 

  • Jones CR, Hiley CR, Pelton JT, Mohr M (1989): Autoradiographic visualization of the binding sites for [125I] endothelin in rat and human brain. Neurosci Lett 97:276–279

    Google Scholar 

  • Joy MD, Lowe RD (1970): Evidence that the area postrema mediates the central cardiovascular response to angiotensin II. Nature 228:1303–1304

    Google Scholar 

  • Kalia M, Mesulam M-M (1980): Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193:467–508

    Google Scholar 

  • Knepel W, Nutto D, Meyer DK (1982): Effect of transection of subfornical organ efferent projections on vasopressin release induced by angiotensin or isoprenaline in the rat. Brain Res 248:180–184

    Google Scholar 

  • Koseki C, Imai M, Hirata Y, Yanagisawa M, Masaki T (1989): Binding sites for endothelin-1 in rat tissues: An autoradiographic study. J Cardiovasc Pharmacol 13:S153–S154

    Google Scholar 

  • Lind RW (1985): A review of the neural connections of the subfornical organ. In: Circumventricular Organs and Body Fluids, Gross PM, ed. Boca Raton CRC Press

    Google Scholar 

  • Lind RW, Swanson LW, Ganten D (1984a): Angiotensin II immunoreactive pathways in the central nervous system of the rat: Evidence for a projection from the subfornical organ to the paraventricular nucleus of the hypothalamus. Clin Exp HypertA6:1915–1920

    Google Scholar 

  • Lind RW, Swanson LW, Ganten D (1984b): Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat. Brain Res 321:209–215

    Google Scholar 

  • Lind RW, Swanson LW, Ganten D (1985a): Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40:2–24

    Google Scholar 

  • Lind RW, Swanson LW, Sawchenko PE (1985b): Anatomical evidence that neural circuits related to the subfornical organ contain angiotensin II. Brain Res Bull 15:79–82

    Google Scholar 

  • Lind RW, Ohman LE, Lansing MB, Johnson AK (1983): Transection of subfornical organ neural connections diminishes the pressor response to intravenously infused angiotensin II. Brain Res 275:361–364

    Google Scholar 

  • Lind RW, Van Hoesen GW, Johnson AK (1982): An HRP study of the connections of the subfornical organ of the rat. J Comp Neurol 210:265–277

    Google Scholar 

  • Lowes VL, Ferguson AV (1991): Microinjection of angiotensin and vasopressin into the rat area postrema increases blood pressure. Can J Physiol Pharmacol 69:Axviii. (Abstract)

    Google Scholar 

  • Mangiapane ML, Simpson JB (1980a): Subfornical organ lesions reduce the pressor effect of systemic angiotensin II. Neuroendocrinology 31:380–384

    Google Scholar 

  • Mangiapane ML, Simpson JB (1980b): Subfornical organ: forebrain site of pressor and dipsogenic action of angiotensin II. Am J Physiol 239:R382–R389

    Google Scholar 

  • Mangiapane ML, Skoog KM, Rittenhouse P, Blair ML, Sladek CD (1989): Lesion of the area postrema region attenuates hypertension in spontaneously hypertensive rats. Circ Res 64:129–135

    Google Scholar 

  • McKinley MJ, Allen A, Clevers J, Denton DA, Mendelsohn FAO (1986): Autoradiographic localization of angiotensin receptors in the sheep brain. Brain Res 375:373–376

    Google Scholar 

  • Mendelsohn FAO, Quirion R, Saavedra JM, Aguilera G (1984): Autoradiographic localization of angiotensin II receptors in rat brain. Proc Natl Acad Sci USA 81:1575–1579

    Google Scholar 

  • Miselis R (1981): The efferent projections of the subfornical organ of the rat: A circumventricular organ with a neural network subserving water balance. Brain Res 230:1–23

    Google Scholar 

  • Morest DK (1960): A study of the structure of the area postrema with Golgi methods. Am J Anat 107:291–303

    Google Scholar 

  • Oldfield BJ, Hou-Yu A, Silverman A-J (1985): A combined electron microscope HRP and immunocytochemical study of the limbic projections to rat hypothalamic nuclei containing vasopressin and oxytocin neurons. J Comp Neurol 231:221–231

    Google Scholar 

  • Papas S, Ferguson AV (1990a): Electrophysiological characterization of reciprocal connections between the parabrachial nucleus and the area postrema in the rat. Brain Res Bull 24:577–582

    Google Scholar 

  • Papas S, Ferguson AV (1990b): Effects of parabrachial stimulation on angiotensin and blood pressure sensitive area postrema neurons. Brain Res Bull 26:269–277

    Google Scholar 

  • Papas S, Ferguson AV (1991): Electrophysiological evidence of baroreceptor input to area postrema. Am J Physiol 261:R9–R13

    Google Scholar 

  • Papas S, Smith P, Ferguson AV (1990): Electrophysiological evidence that systemic angiotensin influences rat area postrema neurons. Am J Physiol 258:R70–R76

    Google Scholar 

  • Phillips MI (1987): Brain angiotensin. In: Circumventricular Organs and Body Fluids. Gross PM, ed. Boca Raton: CRC Press.

    Google Scholar 

  • Philips PA, Kelly JM, Abrahams JM, Grzonka Z, Paxinos G, Mendelsohn FAO, Johnston CI (1988): Vasopressin receptors in rat brain and kidney: studies using a radio-iodinated VI receptor antagonist. J Hypertens 6(Suppl 4):S550–S553

    Google Scholar 

  • Pittman QJ, Laurence D, McLean L (1982): Central effects of arginine vasopressin on blood pressure in rats. Endocrinology 110:1058–1060

    Google Scholar 

  • Plotsky PM, Sutton SW, Bruhn TO, Ferguson AV (1988): Analysis of the role of angiotensin II in the mediation of adrenocorticotropin secretion. Endocrinology 122:538–545

    Google Scholar 

  • Quirion R, Dalpe M, Dam T-V (1986): Characterization and distribution of receptors for the atrial natriuretic peptides in mammalian brain. Proc Natl Acad Sci USA 83:174–178

    Google Scholar 

  • Reid IA (1984): Actions of angiotensin II on the brain: mechanisms and physiological role. Am J Physiol 246:F533–F543

    Google Scholar 

  • Reid JL, Rubin PC (1987): Peptides and central neural regulation of the circulation. Physiol Rev 67:725–749

    Google Scholar 

  • Renaud LP, Rogers J, Sgro S (1983): Terminal degeneration in supraoptic nucleus following subfornical organ lesions: Ultrastructural observations in the rat. Brain Res 275:365–368

    Google Scholar 

  • Rowe BP, Grove KL, Saylor DL, Speth RC (1990): Angiotensin II receptor subtypes in the rat brain. Eur J Pharmacol 186:339–342

    Google Scholar 

  • Saavedra JM (1986): Atrial natriuretic peptide (6–33) binding sites: decreased number and affinity in the subfornical organ of spontaneously hypertensive rats. J Hypertens 4:S313–S316

    Google Scholar 

  • Saavedra JM, Correa FMA, Plunkett LM, Israel A, Kurihara M, Shigematsu K (1986a): Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats. Nature 320:758–760

    Google Scholar 

  • Saavedra JM, Israel A, Kurihara M, Fuchs E (1986b): Decreased number and affinity of rat atrial natriuretic peptide (6–33) binding sites in the subfornical organ of spontaneously hypertensive rats. Circ Res 58:389–392

    Google Scholar 

  • Sawchenko PE, Swanson LW (1982): Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272

    Google Scholar 

  • Severs WB, Daniels-Severs AE (1973): Effects of angiotensin on the central nervous system. Pharmacol Rev 25:415–449

    Google Scholar 

  • Sgro S, Ferguson AV, Renaud LP (1984): Subfornical organ-supraoptic nucleus connections: An electrophysiological study in the rat. Brain Res 303:7–13

    Google Scholar 

  • Shapiro RE, Miselis RR (1985): The central neural connections of the area postrema of the rat. J Comp Neurol 234:344–364

    Google Scholar 

  • Simpson JB, Routenberg A (1973): Subfornical organ: site of drinking elicitation. Science 181:1172–1174

    Google Scholar 

  • Skoog KM, Blair ML, Sladek CD, Williams WM, Mangiapane ML (1990): Area postrema: Essential for support of arterial pressure after hemorrhage in rats. Am J Physiol 258:R1472–R148

    Google Scholar 

  • Skoog KM, Mangiapane ML (1988): Area postrema and cardiovascular regulation in rats. Am J Physiol 254:H963–H969

    Google Scholar 

  • Smith P, Ferguson AV (1991): Paraventricular efferents influence area postrema neurons. Neuroscience 17:612 (Abstract)

    Google Scholar 

  • Sonntag M, Schalike W, Brattstrom A (1990): Cardiovascular effects of vasopressin micro-injections into the nucleus tractus solitarii in normotensive rats. J Hypertens 8:417–421

    Google Scholar 

  • Tanaka J, Kaba H, Saito H, Seto K (1985a): Subfornical organ neurons with efferent projections to the hypothalamic paraventricular nucleus: An electrophysiological study in the rat. Brain Res 346:151–154

    Google Scholar 

  • Tanaka J, Kaba H, Saito H, Seto K (1985b): Electrophysiological evidence that circulating angiotensin II sensitive neurons in the subfornical organ alter the activity of hypothalamic paraventricular neurohypophyseal neurons in the rat. Brain Res 342:361–365

    Google Scholar 

  • Tsutsumi K, Saavedra JM (1991): Quantitative autoradiography reveals different angiotensin II receptor subtypes in selected rat brain nuclei. J Neurochem 56:348–351

    Google Scholar 

  • Undesser KP, Hasser EM, Haywood JR, Johnson AK, Bishop VS (1985): Interactions of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits. Circ Res 56:410–417

    Google Scholar 

  • Unger T, Rohmeiss P, Demmert G, Ganten D, Lang RE, Luft FC (1986): Differential modulation of the baroreceptor reflex by brain and plasma vasopressin. Hypertension 8(Suppl II):II–157–II–162

    Google Scholar 

  • van Der Kooy D, Koda LY (1983): Organization of the projections of a circumventricular organ: The area postrema in the rat. J Comp Neurol 219:328–338

    Google Scholar 

  • Wall KM, Ferguson AV (1992): Endothelin acts at the subfornical organ to influence the activity of putative vasopressin and oxytocin secreting neurons. Brain Res In press

    Google Scholar 

  • Wall KM, Nasr M, Ferguson AV (1992): Actions of endothelin at the subfornical organ. Brain Res 570:180–187

    Google Scholar 

  • Weindl A, Sofroniew M (1985): Neuroanatomical pathways related to vasopressin. In: Neurobiology of Vasopressin, Ganten D, Pfaff D, eds. New York: Springer Verlag

    Google Scholar 

  • Wislocki GB, Putnam TJ (1924): Further observations on the anatomy and physiology of the areae postremae. Anat Rec 27:151–156

    Google Scholar 

  • Yagil C, Sladek CD (1990): Effect of extended exposure to hypertonicity on vasopressin messenger ribonucleic acid content in hypothalamo-neurohypophyseal expiants. Endocrinology 127:1428–1435

    Google Scholar 

  • Ylitalo P, Karppanen H, Paasonen MK (1974): Is the area postrema a control centre of blood pressure. Nature 274:58–59

    Google Scholar 

  • Zhang T-X, Ciriello J (1985): Effect of paraventricular nucleus lesions on arterial pressure and heart rate after aortic baroreceptor denervation in the rat. Brain Res 341:101–109

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

Ferguson, A.V., Bains, J.S., Lowes, V.L. (1992). Circumventricular Organs and Cardiovascular Homeostasis. In: Kunos, G., Ciriello, J. (eds) Central Neural Mechanisms in Cardiovascular Regulation. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-9184-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9184-5_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-9186-9

  • Online ISBN: 978-1-4684-9184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics