Advertisement

Role of Vasopressin in Central Cardiovascular Regulation

  • Kathleen H. Berecek

Abstract

Neuropeptides constitute a highly varied group of proteins consisting of as few as 3 and up to 300 amino acids. They also display a great diversity of function, being involved in such varied processes as reproduction, growth and development, learning and behavior, and regulation of autonomic function (Richter, 1988). In recent years, the role of neuropeptides in the central regulation of arterial pressure and in the pathogenesis of hypertension has been the subject of considerable attention (Reid and Rubin, 1987). Neuropeptides mediate a variety of activities either by an endocrine hormonal route or by acting as local regulatory peptides modulating communication between cells. In many instances, the same peptide may display both paracrine and endocrine activities (Morris et al., 1987). Of all the neuropeptides, arginine vasopressin (AVP) has been one of the most widely studied. The availability of sophisticated immunocytochemical and biochemical methods has permitted localization of AVP in areas of the brain known to be involved in cardiovascular regulation. In addition, specific AVP receptors with high affinity have been found in these same brain areas.

Keywords

Locus Coeruleus Sympathetic Outflow Supraoptic Nucleus Vasopressin Receptor Magnocellular Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angulo JA, Ledoux, M, McEwen (1991): Genomic effects of cold and isolation stress on magnocellular vasopressin mRNA-containing cells in the hypothalamus of the rat. J Neurochem 56(6):2033–2038CrossRefGoogle Scholar
  2. Backman SB, Henry JL (1984): Effects of oxytocin and vasopressin on thoracic sympathetic preganglionic neurons in the cat. Brain Res Bull 13:679–684CrossRefGoogle Scholar
  3. Bennett T, Gardiner SM (1986): Influences of exogenous vasopressin on baroreflex mechanisms. Clin Sci 70:307–315Google Scholar
  4. Bennett T, Gardiner SM (1988): Influence of endogenous vasopressin on cardiovascular regulation: Studies in Long Evans and Brattleboro rats. In: Vasopressin, Cellular and Integrative Aspects, Cowley AW, et al., eds. New York: Raven PressGoogle Scholar
  5. Berecek KH (1986): Role of central vasopressin in cardiovascular regulation. J Cardiovasc Pharmacol 8(Suppl 7):S76–S80CrossRefGoogle Scholar
  6. Berecek KH, Barron KW, Webb RL, Brody MJ (1982a): Vasopressin-central nervous system interactions in the development of DOCA hypertension. Hypertension 4(Suppl II):II–131–II–137Google Scholar
  7. Berecek KH, Coshatt G, Narkates AJ, Oparil S, Wilson KM, Robertson J (1988): Captopril and the response to stress in the spontaneously hypertensive rat. Hypertension II(Suppl I):I–144–I–147Google Scholar
  8. Berecek KH, Mah SC, Baum P, Hofbauer KG (1984a): Cardiovascular (CV) effects of intracerebroventricular (icv) injection of vasopressin (AVP) in unanesthetized nor-motensive and hypertensive rats. J Hypertens 2(Suppl 3):29–31Google Scholar
  9. Berecek KH, Murray RD, Gross F, Brody MJ (1982b): Vasopressin and vascular reactivity in development of hypertension in rats with hereditary diabetes insipidus (DI). Hypertension 4:3–12Google Scholar
  10. Berecek KH, Okuno T, Nagahama S, Oparil S (1983): Altered vascular reactivity and baroflex sensitivity induced by chronic central administration of captopril in the spontaneously hypertensive rat. Hypertension 5:689–700Google Scholar
  11. Berecek KH, Olpe HR, Hofbauer KG (1987): Enhanced responsiveness of locus coeruleus neurons in Deoxycorticosterone (DOCA)-salt hypertensive rats to microiontophoretically applied vasopressin. Hypertension 9(Suppl III): 110–113Google Scholar
  12. Berecek KH, Olpe HR, Jones RSG, Hofbauer KG (1984b): Microinjection of vasopressin into the locus coeruleus of conscious rats. Am J Physiol 247:H675–H681Google Scholar
  13. Berecek KH, Stocker M, Gross F (1980): Changes in renal vascular reactivity at various stages of deoxycorticosterone hypertension in rats. Circulation 46:619–624Google Scholar
  14. Berecek KH, Webb RL, Brody MJ (1983): Evidence for a central role for vasopressin in cardiovascular regulation. Am J Physiol 244:H852–H859Google Scholar
  15. Berecek KH, Wyss JM, Swords BH (1991): Alterations in vasopressin mechanisms in captopril-treated spontaneously hypertensive rats. Clin Exp Hypertens A13(5):1019–1031CrossRefGoogle Scholar
  16. Birbaumer M, Seibold A, Gilbert S, Ishido M, Barberis C, Antaramian A, Brabet P, Rosenthal W. Molecular cloning of the receptor for human antidiuretic hormone. Nature 357:333–335, 1992CrossRefGoogle Scholar
  17. Bishop VS, Hasser EM, Nair UC (1987): Baroreflex control of renal nerve activity in conscious animals. Circ Res 61:(Suppl I)I–76–I–89Google Scholar
  18. Blessing WW, Willoughby JO (1985): Excitation of neuronal function in rabbit caudal ventrolateral medulla elevates plasma vasopressin. Neurosci Lett 58:189–194CrossRefGoogle Scholar
  19. Brattstrom A, DeJong W, DeWied D (1988): Vasopressin microinjections into the nucleus tractus solitarii decrease heart rate and blood pressure in anesthetized rats. J Hypertens 6(Suppl 4):S521–S524Google Scholar
  20. Brinton RE, Lee KW, Wamsley JK, Davis TP, Yamamura HI (1983): Regional distribution of putative vasopressin receptors in rat brain and pituitary by microscopic autoradiographic visualization of [3H] arginine vasopressin binding sites in rat brain. Life Sci 32:1919–1924CrossRefGoogle Scholar
  21. Brody MJ, Johnson AK (1980): Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension. In: Frontiers in Neuroendocrinology, Martin I, Ganong WF, eds. New York: Raven PressGoogle Scholar
  22. Bruner CA, Mangiapane ML, Fink GD, Webb RC (1987): Area postrema lesion prevents hypertension but not altered vascular reactivity in deoxycorticosterone-salt treated rats. Hypertension 10:3Google Scholar
  23. Brunner HR, Hofbauer KG, Valloton MB, eds. (1986): Swiss Hypertension Workshop on Vasopressin. J Cardiovasc Pharmacol 8(Suppl 7)Google Scholar
  24. Buijs RM (1987): Vasopressin localization and putative functions in the brain. In: Vasopressin Principles and Properties, Gash DM, Boer GJ, eds. New York: Plenum PressGoogle Scholar
  25. Buijs RM, Hermes MLHJ, Kalsbeek A, van der Woude T, van Heerikhuize JJ (1991): Vasopressin distribution, origin and functions in the central nervous system. In: Vasopressin, Jard S, Jamison R, eds. Paris: Colloque Inserm/John Libbey Eurotext LtdGoogle Scholar
  26. Buijs RM, Hermes MLHJ, van der Woude TP, P. Pevet, Masson-Pevet M (1988): Vasopressin localization and putative functions in the brain. In Vasopressin: Cellular and Integrative Functions, Cowley Jr AW, Liard JF, Ausiello A, eds. New York: Raven PressGoogle Scholar
  27. Buijs RM, Swaab DF (1979): Immunoelectron microscopical demonstration of vasopressin and oxytocin synapses in the rat limbic system. Cell Tissue Res 204:355–365CrossRefGoogle Scholar
  28. Buijs RM, Swaab DF, Dogterom J, van Leeuwen FW (1978): Intra and extra hypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186:423–433CrossRefGoogle Scholar
  29. Buijs RM, van Heerikhuize JJ (1982): Vasopressin and oxytocin release in the brain. A synaptic event. Brain Res 252:71–76CrossRefGoogle Scholar
  30. Caffe AR, van Leeuwen FW (1983): Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat. Cell Tissue Res 233:23–33CrossRefGoogle Scholar
  31. Chaudry MA, Dyball REJ, Honda K, Wright WC (1989): The role of interconnection between supraoptic nucleus and anterior third ventricular region in osmoregulation in the rat. J Physiol 410:123–135Google Scholar
  32. Cheng SWT, North WG (1989): Vasopressin reduces release from vasopressin-neurons and oxytocin-neurons by acting on V2-like receptors. Brain Res 479:35–39CrossRefGoogle Scholar
  33. Cheng SWT, Wilson KM, Mulchahey JJ, Stallworth JW, Berecek KH (1989): Vasopressin in neuronal cultures from neonatal rat brain. Hypertension 13:902–909Google Scholar
  34. Ciriello J (1988): Contribution of forebrain mechanisms in the maintenance of deoxycorticosterone acetate-salt hypertension. Clin Exp Hypert 10(Suppl 1): 169–178CrossRefGoogle Scholar
  35. Ciriello J, Calaresu FR (1980): Role of paraventricular and supraoptic nuclei in central cardiovascular regulation in the cat. Am J Physiol 239:R137–R142Google Scholar
  36. Ciriello J, Kline RL, Zhang TX, Caverson MM (1984): Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Res 310:355–359CrossRefGoogle Scholar
  37. Collis MG (1981): Vascular reactivity to vasopressin in DOCA-salt hypertensive rats. J Pharmacol 33(7):468–469CrossRefGoogle Scholar
  38. Cornett LE (1987): Vasopressin receptors. In: Peptide Hormone Receptors, Kalami MY, Hubbard JR, eds. New York: Walter de Gruyter and Co.Google Scholar
  39. Cowley AW Jr, Liard JF (1987): Cardiovascular actions of vasopressin. In Vasopressin Principles and Properties, Gash DM, Boer GJ, eds. New York: Plenum PressGoogle Scholar
  40. Cowley AW Jr, Liard JF, Ausiello DA (1988): Vasopressin: Cellular and Integrative Functions. New York: Raven PressGoogle Scholar
  41. Cowley AW Jr, Monos E, Guyton AC (1974): Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood presure in the dog. Circ Res 34:505–514Google Scholar
  42. Crofton JT, Share L, Shade RE, Allen C, Tarnowski D (1978): Vasopressin in the rat with spontaneous hypertension. Am J Physiol 135:H361–H365Google Scholar
  43. Crofton JT, Share L, Shade RE, Lee Kwon WJ, Manning M, Sawyer WH (1979): The importance of vasopressin in the development and maintenance of DOCA-salt hypertension in the rat. Hypertension 1:31–38Google Scholar
  44. Crofton JT, Share L, Wang BC, Shade RE (1980): Pressor responsiveness to vasopressin in the rat with DOCA-salt hypertension. Hypertension 2:424–431Google Scholar
  45. Cunningham ET, Sawchenko PE (1988): Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274:60–76CrossRefGoogle Scholar
  46. Davis LG, Arentzen R, Reid JM, Manning RW, Wolfson B, Lawrence KL, Baldino F Jr. (1986): Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat. Proc Natl Acad Sci USA 83(4): 1145–1149CrossRefGoogle Scholar
  47. Day TA (1989): Control of neurosecretory vasopressin cells by noradrenergic projections of the caudal ventrolateral medulla. Prog Brain Res 81:303–317CrossRefGoogle Scholar
  48. De Champlain J, Farley L, Cousineau D, van Amerigen MR (1976): Circulating catecholamine levels in human and experimental hypertension. Circ Res 38:109–114Google Scholar
  49. De Champlain J, van Amerigen MR (1972): Regulation of blood pressure by sympathetic nerve fibers and adrenal medulla in normotensive and hypertensive rats. Circ Res 31:617–628Google Scholar
  50. De Vries GH, Buijs RM (1983): The origin of the vasopressinergic and oxytocinergic innervation of the rat brain, with special reference to the lateral septum. Brain Res 273:307–317CrossRefGoogle Scholar
  51. De Vries GJ, Buijs RM, Van Leeuwen FW, Caffe AR, Swaab DF (1985): The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233:236–254CrossRefGoogle Scholar
  52. Dickey BF, Fishman JB, Fine RF, Navarro J (1987): Reconstitution of the rat liver vasopressin receptor coupled to guanine nucleotide-binding proteins. J Biol Chem 262:8738–8742Google Scholar
  53. Dogterom J, van Wimersma-Greidanus TB, DeWied D (1977): Evidence for release of vasopressin and oxytocin into cerebrospinal fluid: Measurements in plasma and CSF of intact and hypophysectomized rat. Neuroendocrinology 24:108–118CrossRefGoogle Scholar
  54. Doris PA, Bell FR (1984): Vasopressin in plasma and cerebrospinal fluid of hydrated and dehydrated steers. Neuroendocrinology 38:290–296CrossRefGoogle Scholar
  55. Dorsa DM, Majumdar LA, Petracca FM, Baskin DG, Cornett LE (1983): Characterization localization of 3H-arginine8-vasopressin binding to rat kidney and brain tissue. Peptides 4:699–706CrossRefGoogle Scholar
  56. Dreifuss JJ, Ragenbass M, Charpak S, Dubois-Dauphin M, Tribollett E (1988): A role of central oxytocin in autonomic functions: its actions in the motor nucleus of the vagus. Brain Res Bull 20:765–770CrossRefGoogle Scholar
  57. Dreifuss JJ, Tribollet E, Goumaz M, Dubois-Dauphin M, Raggenbass M (1991): Vasopressin receptor localization and neuronal responsiveness in the rat brain. In: Vasopressin, Jard S, Jamison R, eds. Paris: Colloque Inserm/John Libbey Eurotext LtdGoogle Scholar
  58. Ferguson AV (1987): The subfornical organ: a central integrator in the control of neurohypophysial hormone secretion. In: Organization of the Autonomic Nervous System: Central and Peripheral Mechanisms, Cireillo J, Calaresu FR, Polosa C, Renaud LP, eds. New York: Raven PressGoogle Scholar
  59. Ferguson AV, Renaud LP (1986): Systemic angiotensin acts at subfornical organ to facilitate activity of neurohypophysial neurons. Am J Physiol 251:R712–R717Google Scholar
  60. Feuerstein G, Zerbe RL, Ben-Ishay D, Kopin IJ, Jacobowitz DM (1981): Catecholamines and vasopressin in forebrain nuclei of hypertension prone and resistant rats. Brain Res Bull 7:671–676CrossRefGoogle Scholar
  61. Feuerstein G, Zerbe RL, Faden AI (1983): Central cardiovascular effects of vasotocin, oxytocin and vasopressin in conscious rats. J Pharmacol Exp Ther 228:348–353Google Scholar
  62. Fliers E, De Vries GJ, Swaab DF (1985): Changes in aging in vasopressin and oxytocin innervation of rat brain. Brain Res 348:1–8CrossRefGoogle Scholar
  63. Friedman SM, Friedman CL, Nakashima M (1960): Accelerated appearance of DOCA hypertension in rats treated with pitressin. Endocrinology 67:752–759CrossRefGoogle Scholar
  64. Gash DM, Boer GJ, eds. (1987): Vasopressin: Principles and Properties, New York: Plenum PressGoogle Scholar
  65. Ganten D, Pfaff D, eds. (1985): Neurobiology of Vasopressin, Current Topics in Neuroendocrinology, Vol. 4, Berlin: Springer-VerlagGoogle Scholar
  66. Gavras H, Gavras I (1989): Salt-induced hypertension: The interactive role of vasopressin and the sympathetic nervous system. J Hypertens 7:601–606CrossRefGoogle Scholar
  67. Gavras H, Hatzinkolau R, North WG, Bresnahan M, Gavras I (1982): Interaction of the sympathetic nervous system with vasopressin and renin in the maintenance of blood pressure. Hypertension 4:400–405Google Scholar
  68. Gerstberger R, Fahrenholz F (1989): Autoradiographic localization of vasopressin binding sites in rat brain and kidney. Eur J Pharmacol 167(1): 105–116CrossRefGoogle Scholar
  69. Gruber KA, Eskridge SL (1986): Activation of the central vasopressin system: A common pathway for several centrally acting pressor agents. Am J Physiol 251:476–480Google Scholar
  70. Gruber KA, Eskridge SL, Callahan MF (1987): Activation of the central vasopressin system: a potential factor in the etiology of hypertension. Klin-Wocheschr 65(Suppl 3):82–86Google Scholar
  71. Guillon G, Butlen D, Rajerison R (1984): Evidence for two molecular forms of solubilized vasopressin receptors in rat kidney membranes. Regulation by guanyl nucleotides. Mol Pharmacol 26:241Google Scholar
  72. Haeusler G, Finch L, Thoenen H (1972): Central adrenergic neurons and the initiation and development of experimental hypertension. Experientia 28:1200–1206CrossRefGoogle Scholar
  73. Harland D, Gardiner SM, Bennett T (1988): Cardiovascular and diposgenic effects of angiotensin II administered ICV in Long Evans and Brattleboro rats. Brain Res 455(1):58–64CrossRefGoogle Scholar
  74. Harland D, Gardiner SM, Bennett T (1989): Differential cardiovascular effects of centrally administered vasopressin in conscious Long Evans and Brattleboro rats. Circ Res 65:925–933Google Scholar
  75. Harris MC, Driefuss JJ, Legross JJ (1975): Excitation of phasically firing supraoptic neurons during vasopressin release. Nature 258:89–82CrossRefGoogle Scholar
  76. Hasser EM, Nelson DO, Haywood JR, Bishop VS (1987): Inhibition of renal sympathetic nerve activity by area postrema stimulation in rabbits. Am J Physiol 253:H91–H99Google Scholar
  77. Hawthorn J, Graham JM, Jenkins JS (1984): Localization of vasopressin in synaptic vesicles of extrahypothalamic rat brain. Life Sci 35:277–284CrossRefGoogle Scholar
  78. Herman JP, Schäfer KH, Sladek CD, Day R, Young EA, Akil H, Watson SH (1989): Chronic electroconvulsive shock treatment elicits up-regulation of CRF and AVP mRNA in select populations of neuroendocrine neurons. Brain Res 501:235–246CrossRefGoogle Scholar
  79. Herman JP, Schafer MK, Young EA, Thompson R, Douglass J, Akil H, Watson SJ (1989): Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci 9:3072–3082Google Scholar
  80. Hofbauer KG, Mah SC, Baum HP, Hanni H, Wood JM, Kraitz J (1984): Endocrine control of salt and water excretion: the role of vasopressin in DOCA-salt hypertension. J Cardiovasc Pharmacol 6:S184–S191CrossRefGoogle Scholar
  81. Honda K, Negoro H, Higuchi T, Takakoro Y (1987): Activation of neurosecretory cells by osmotic stimulation of anteroventral third ventricle. Am J Physiol 252:R1039–R1045Google Scholar
  82. Hoorneman EMD, Buijs RM (1982): Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res 243:235–241CrossRefGoogle Scholar
  83. Horn AM, Lightman SL (1988): Vasopressin-stimulated turnover of phosphatidylinositol in the decentralised superior cervical ganglion of the rat. Brain Res 455:18–23CrossRefGoogle Scholar
  84. Ijima F, Malik KU (1985): Mesenteric vascular reactivity in dexamethasone treated hypertensive rats. Hypertension 7:783–790Google Scholar
  85. Imai Y, Nolan PL, Johnston CI (1983): Restoration of suppressed baroreflex sensitivity in rats with hereditary diabetes insipidus (Brattleboro rats) by arginine vasopressin and DDAVP. Cric Res 53:140–149Google Scholar
  86. Imaizumi T, Thames MD (1986): Influence of intravenous and intracerebroventricular vasopressin on baroreflex control of renal nerve traffic. Circ Res 58:17–25Google Scholar
  87. Ishizawa H, Dave JR, Liu LI, Tabakoff B, Hoffman PL (1990): Hypothalamic vasopressin mRNA levels in mice are decreased after chronic ethanol ingestion. Eur J Pharmacol 189:119–127CrossRefGoogle Scholar
  88. Ivell R, Richter D (1984): The gene for the hypothalamic peptide hormone oxytocin is highly expressed in the bovine corpus luteum; biosynthesis, structure and sequence analysis. EMBO J 3:2351–2354Google Scholar
  89. Jard S (1985): Vasopressin receptors. Front Horm Res 13:89–104Google Scholar
  90. Jard S (1988): Mechanisms of action of vasopressin and vasopressin antagonists. Kidney Int 26:S38–42Google Scholar
  91. Jard S, Jamison R, eds. (1991): Vasopressin. Paris: Colloque Inserm/John Libbey Eurotext LtdGoogle Scholar
  92. Jard S, Barberis C, Audigier S, Tribollet E (1987): Neurohypophysial hormone receptor systems in brain and periphery. Prog Brain Res 72:173–187CrossRefGoogle Scholar
  93. Jard S, Elands J, Schmidt A, Barberis C (1988): Vasopressin and oxytocin receptors: An overview. In: Progress in Endocrinology, Imura H, et al., eds. Amsterdam: Elsevier (Biomed. Div.)Google Scholar
  94. Jard S, Gaillard R, Guillon G, Marie J, Schoenenberg P, Muller A, Manning M, Sawyer W (1986): Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30:171–177Google Scholar
  95. Jhamandas JH, Lind RW, Renauld LP (1989): Angiotensin II may mediate excitatory neurotransmission from the subfornical organ to the hypothalamic supraoptic nucleus: an anatomical and electrophysiological study in the rat. Brain Res 487:52–61CrossRefGoogle Scholar
  96. Johnson AK (1985): Role of the periventricular tissue surrounding the anteroventral third ventricle (AV3V) in the regulation of body fluid homeostasis. In: Vasopressin, Schrier RW, ed. New York: Raven PressGoogle Scholar
  97. Kannan H, Yagi K (1978): Supraoptic neurosecretory neurons: Evidence for existence of converging inputs both from carotid baroreceptors and osmoreceptors. Brain Res 145:385–390CrossRefGoogle Scholar
  98. Kawano Y, Ferrario CM (1984): Neurohormonal characteristics of cardiovascular response due to intraventricular hypertonic NaCl. Am J Physiol 247:H422–H428Google Scholar
  99. Kimura T, Tanizawa O, Mori K, Brownstein MJ, Okayama H. Structure and expression of a human oxytocin receptor. Nature 356:526–529, 1992CrossRefGoogle Scholar
  100. Landgraf R, Raminez AD, Ramirez VD (1991a): The positive feedback action of vasopressin on its own release from rat septal tissue in vitro is receptor-mediated. Brain Res 545:137–141CrossRefGoogle Scholar
  101. Landgraf R, Szot P, Dorsa DM (1991b): Vasopressin receptors in the brain, liver and kidney of rats following osmotic stimulation. Brain Res 544:287CrossRefGoogle Scholar
  102. Lang RE, Ganten D, Ganten U, Rascher W, Unger TH (1984): Pathogenesis of hypertension in spontaneously hypertensive rats: definite evidence against a role of vasopressin. Clin Exp Hypertens A6:121–138CrossRefGoogle Scholar
  103. Laszlo FA, Laszlo F, Jr, DeWied D (1991): Pharmacology and clinical perspectives of vasopressin antagonists. Pharmacol Rev 43:73–108Google Scholar
  104. Leng G, Dyball REJ, Mason WT (1985): Electrophysiology of osmoreceptors. In: Vasopressin, Schrier RW, ed. New York: Raven PressGoogle Scholar
  105. Leng G, Dyball REJ, Russell JA (1988): Neurophysiology of body fluid homeostasis. Comp Biochem Physiol 90A:781–788CrossRefGoogle Scholar
  106. Leng G, Mason WT, Dyer RG (1982): The supraoptic nucleus as an osmoreceptor. Neuroendocrinology 34:65–82CrossRefGoogle Scholar
  107. Liard JF, Cowley AW Jr, McCaa RE, McCaa CS, Guyton AC (1974): Renin-aldosterone, body fluid volumes and baroreceptor reflex in the development and reversal of Goldblatt hypertension in conscious dogs. Circ Res 34:549–560Google Scholar
  108. Liard JF, Deriaz O, Tschopp M, Schoun J (1981): Cardiovascular effects of vasopressin infused into the vertebral circulation of conscious dogs. Clin Sci 61:345–347Google Scholar
  109. Lightman SL, Young WS (1988): Corticotrophin-releasing factor, vasopressin and proopiomelanocortin mRNA responses to stress and opiates in the rat. J Physiol 403:511–523Google Scholar
  110. Lolait SJ, O’Carroll A-M, McBride OW, Konig M, Morel A, Brownstein MJ. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357:336–339, 1992CrossRefGoogle Scholar
  111. Ma RC, Dun NJ (1985): Vasopressin depolarizes lateral horn cells of the neonatal rat spinal cord in vitro. Brain Res 348:36–43CrossRefGoogle Scholar
  112. Manning M, Bankowksi K, Sawyer WH (1987): Selective agonists and antagonists of vasopressin. In: Vasopressin: Principles and Properties, Gash DM, Boer GJ, eds. New York: PlenumGoogle Scholar
  113. Matsuguchi H, Schmid PG (1982): Pressor response to vasopressin and impaired baroreflex function in DOCA-salt hypertension. Am J Physiol 242:H44–H49Google Scholar
  114. Matsuguchi H, Sharabi FM, Gordon FJ, Johnson AK, Schmid PG (1982): Blood pressure and heart rate responses to microinjection of vasopressin into the nucleus tractus solitarius region of the rat. Neuropharmacology 21:687–693CrossRefGoogle Scholar
  115. Metoki T (1976): Antidromically identified neurohypophysial neurosecretory neurons: Effects of hemorrhage, retransfusion and hyperosmolal stimulation on unit activity in the rat. Brain Res 107:424–428CrossRefGoogle Scholar
  116. Michelini LC, Bonagamba LGH (1988): Baroreceptor reflex modulation by vasopressin microinjected into the nucleus tractus solitarii of conscious rats. Hypertension (Suppl I):I-75–I-79Google Scholar
  117. Mohring J, Kintz J, Schoun J (1979): Studies on the role of vasopressin in blood pressure control of spontaneously hypertensive rats with established hypertension (SHR, stroke prone strain). J Cardiovasc Pharmacol 1(6):593–608CrossRefGoogle Scholar
  118. Mohring J, Mohring B, Petri M, Haack D (1977): Vasopressor role of ADH in the pathogenesis of malignant DOC hypertension. Am J Physiol 232:F260–F269Google Scholar
  119. Montani JP, Liard JF, Schoun J, Mohring J (1980): Hemodynamic effects of exogenous and endogenous vasopressin at low plasma concentrations in conscious dogs. Circ Res 47:346–355Google Scholar
  120. Morel A, O’Carroll A-M, Brownstein MJ, Lolait SJ. Molecular cloning and expression of the rat V1a arginine vasopressin receptor. Nature 356:523–526, 1992CrossRefGoogle Scholar
  121. Morris JF, Chapman DB, Sokol HW (1987): Anatomy and function of the classic vasopressin-secreting hypothalamus-neurohypophysial system. In: Vasopressin Principles and Properties, Gash DM, Boer GF, eds. New York: Plenum PressGoogle Scholar
  122. Morris M (1982): Neurohypophyseal response to dehydration in the spontaneously hypertensive rat. Hypertension 4:161–166Google Scholar
  123. Morris M, Alexander N (1980): Baroreflex influences on oxytocin and vasopressin secretion. Hypertension 13:110–114Google Scholar
  124. Morris M, Keller M, Sundberg DK (1983): Changes in paraventricular vasopressin and oxytocin during the development of spontaneous hypertension. Hypertension 5:476–481Google Scholar
  125. Morris M, Ross J, Sundberg DK (1985): Catecholamine biosynthesis and vasopressin and oxytocin secretion in the spontaneously hypertensive rat: An in vitro study of localized brain regions. Peptides 6:949–955CrossRefGoogle Scholar
  126. Negro-Vilar A, Saavedra JM (1980): Changes in brain somatostatin and vasopressin levels after stress in spontaneously hypertensive and Wistar-Kyoto rats. Brain Res Bull 5:353–358CrossRefGoogle Scholar
  127. Nissen R, Renaud LP (1980): GABA-A receptors mediate median preoptic-evoked inhibition of supraoptic neurosecretory neurons in rat. Soc Neurosci Abstr 15:525Google Scholar
  128. Olpe HR, Baltzer V (1981): Vasopressin activates noradrenergic neurons in the rat locus coeruleus: A microiontophoresis investigation. Eur J Pharmacol 73:377–378Google Scholar
  129. Pearlmutter AF, Constatini MG, Leser B (1983): Characterization of3H-AVP binding sites in particulate preparations of rat brain. Peptides 4:335–341CrossRefGoogle Scholar
  130. Petty MA, Lang RE, Unger T, Ganten D (1985): The cardiovascular effects of oxytocin in conscious male rats. Eur J Pharmacol 112:203–210CrossRefGoogle Scholar
  131. Phillips MI (1987): Brain angiotensin in vitro studies and a unifying hypothesis of hypertension. In: Brain Peptides and Catecholamines in Cardiovascular Regulation, Buckley JP, Ferrario CM, eds. New York: Raven PressGoogle Scholar
  132. Phillips MI, Steiner M (1989): Up regulation of renal tubular vasopressin receptors in DOCA-salt hypertensive rats. FASEB J 3:A1044Google Scholar
  133. Phillips PA, Abrahams JM, Kelly J, Paxinos G, Mendelsohn FAO, Johnston CI (1988a): Localization of vasopressin binding sites in rat brain by in vitro autoradiography using a radioiodinated V1 receptor antagonist. Neuroscience 27:749–761CrossRefGoogle Scholar
  134. Phillips PA, Kelly JM, Abrahams JM, Grzonka Z, Mendelsohn FAO, Johnston CI (1988b): Vasopressin receptors in rat brain and kidney: Studies using a radioiodinated V1 receptor antagonist. J Hypertens 6(Suppl 4):S550–S553Google Scholar
  135. Pittman QT, Lawrence D, McLean L (1982): Central effects of arginine vasopressin on blood pressure in rats. Endocrinology 110:1058–1060CrossRefGoogle Scholar
  136. Porter JP, Brody MJ (1986): Spinal vasopressin mechanisms of cardiovascular regulation. Am J Physiol 251:R510–R517Google Scholar
  137. Rabito SF, Carretero OA, Scicli AG (1981): Evidence against a role of vasopressin in the maintenance of high blood pressure in mineralocorticoid and renovascular hypertension. Hypertension 3:34–38Google Scholar
  138. Raggenbass M, Goumax M, Sermasi E, Tribollet E, Dreifuss JJ (1991): Vasopressin generates a persistent voltage-dependent sodium current in a mammalian motoneuron. J Neurosci 11:1609–1616Google Scholar
  139. Rajerison R, Marchetti J, Roy C, Bockaert J, Jard S (1974): The vasopressin-sensitive adenylate cyclase of the rat kidney. Effect of adrenalectomy and corticosteroids on hormonal receptor-enzyme coupling. J Biol Chem 249:6390–6400Google Scholar
  140. Rascher W, Lang RE, Ganten D, Meffle H, Taubitz M, Unger T, Gross F (1983): Vasopressin in deoxycorticosterone acetate hypertension of rats: A hemodynamic analysis. J Cardiovasc Pharmacol 5:418–425CrossRefGoogle Scholar
  141. Reid JL, Rubin PC (1987): Peptides and central neural regulation of the circulation. Physiol Rev 67:725–749Google Scholar
  142. Renaud LP, Bourque CW (1991): Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Prog Neurobiol. In pressGoogle Scholar
  143. Renaud LP, Cunningham JT, Jarvis C, Nissen R, Sullivan M, van Vulpen E, Yang CR (1991): Neural afferent connections to magnocellular vasopressin-secreting neurons. In: Vasopressin, Jard S, Jamison R, eds. Paris: Colloque Inserm/John Libbey Eurotext LtdGoogle Scholar
  144. Richter D (1988): Molecular events in expression of vasopressin and oxytocin and their cognate receptors. Am J Physiol 255:F207–F219Google Scholar
  145. Riphagen CL, Pittman QJ (1980): Mechanisms underlying the cardiovascular responses to intrathecal vasopressin administration in rats. Can J Physiol Pharmacol 67:269–275CrossRefGoogle Scholar
  146. Riphagen CL, Pittman QJ (1985): Vasopressin influences renal function via a spinal action. Brain Res 336:346–349CrossRefGoogle Scholar
  147. Robinson ICAF (1983): Neurohypophysial peptides in cerebrospinal fluid in the neurohypophysis: Structure, function and control. Progress in Brain Res 60:129–143CrossRefGoogle Scholar
  148. Rockhold RW, Crofton JT, Brooks DP, Share L (1984): The response of vasopressin and blood pressure to hemorrhage in SHR and WKY rats. Clin Exp Hpertens 6:827–849CrossRefGoogle Scholar
  149. Saavedra JM, Grobecker H, Axelrod J (1978): Changes in central catecholaminergic neurons in the spontaneously (genetic) hypertensive rats. Circ Res 42:529–534Google Scholar
  150. Saito T, Yajima Y, Watanabe T (1981): Involvement of VP in the development and maintenance of hypertension in rats. In: Antidiuretic Hormone, Yoshida S, Share L, Yagi K, eds. Baltimore: University Park PressGoogle Scholar
  151. Saper CB, Loewy AD, Swanson LW, Cowan WM (1976): Direct hypothalamo-autonomic connections. Brain Res 117:305–312CrossRefGoogle Scholar
  152. Sawchenko PE, Arias C, Bittencourt JC (1990): Inhibin beta, somatostatin and enkephelin-immunoreactivities coexist in caudal medullary neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol 291:269–280CrossRefGoogle Scholar
  153. Sawchenko PE, Swanson LW (1981): Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214:685–687CrossRefGoogle Scholar
  154. Sawchenko PE, Swanson LW (1983): The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J Comp Neurol 218:121–144CrossRefGoogle Scholar
  155. Sawchenko PE, Swanson LW, Steinbusch HWM, Verhofstad NAJ (1983): The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277:355–360CrossRefGoogle Scholar
  156. Schmale H, Heinsohn S, Richter D (1983): Structural organization of the rat gene for the arginine vasopressin neurophysin precursor. EMBO J 2:763–767Google Scholar
  157. Scholer J, Sladek JR Jr (1981): Supraoptic nucleus of the brattleboro rat has an altered afferent noradrenergic input. Science 214:347–349CrossRefGoogle Scholar
  158. Schrier RW ed., (1985): Vasopressin. New York: Raven PressGoogle Scholar
  159. Severs WB, Summy-Long J, Taylor JS, Connor JD (1970): A central effect of angiotensin: Release of pituitary pressor material. J Pharmacol Exp Ther 174:27–32Google Scholar
  160. Severs WC, Keil LC, Wurpel JND, Dundore RL (1987): Cerebrospinal fluid pressure of conscious rats: Effects of artificial CSF, angiotensin and vasopressin infusions. In: Brain Peptides and Catecholamines in Cardiovascular Regulation, Buckley JP, Ferrario CM, eds. New York: Raven PressGoogle Scholar
  161. Share L, Levy MN (1966): Carotid sinus pulse pressure, a determinant of plasma antidiuretic hormone concentration. Am J Physiol 211:721–724Google Scholar
  162. Sharif M, Hanley MR. Stepping up the pressure. Nature 357:279–280, 1992CrossRefGoogle Scholar
  163. Shewey LM, Boer GJ, Szot P, Dorsa DM (1980): Regulation of vasopressin receptors and phosphoinositide hydrolysis in the septum of heterozygous and homozygous brattleboro rats. Neuroendocrinol 50:292–298CrossRefGoogle Scholar
  164. Shewey LM, Brot MD, Szot P, Dorsa DM (1989): Enhanced phosphoinositol hydrolysis in response to vasopressin in the septum of the homozygous brattleboro rat. Brain Res 478:95–102CrossRefGoogle Scholar
  165. Shewey LM, Dorsa DM (1986): Enhanced binding of 3H arginine8 vasopressin in the brattleboro rat. Peptides 7:701–704CrossRefGoogle Scholar
  166. Sladek CD, Blair ML, Mangiapane M (1987): Evidence against a pressor role for vasopressin in spontaneous hypertension. Hypertension 9:332–338Google Scholar
  167. Sladek CD, Blair ML, Mangiapane M (1991): Effects of vasopressin analogues in hypertension. In: Vasopressin, Jard S, Jamison R, eds. Paris: Colloque Inserm/John Libbey Eurotext LtdGoogle Scholar
  168. Sladek C, Blair M, Sterline C, Mangiapane M (1988a): Attenuation of spontaneous hypertension in rats by a vasopressin antagonist. Hypertension 12:506–512Google Scholar
  169. Sladek JR Jr, Davis BJ, Sladek CD (1986): Localization of vasopressin-neurophysin and norepinephrine in the supraoptic nucleus of spontaneously hypertensive rats. Brain Res 365:293–304CrossRefGoogle Scholar
  170. Sladek CD, Devine MA, Felten SY, Aravich PF, Blair ML (1988b): Abnormalities in hypothalamic and neurohypophysial vasopressin content are not a consequence of hypertension in the spontaneously hypertensive rat. Brain Res 445:39–46CrossRefGoogle Scholar
  171. Stark RI, Daniel SS, Husain MK, Zubrow AB, James LS (1984): Effects of hypoxia on vasopressin concentrations in cerebrospinal fluid and plasma of sheep. Neuroendocrinology 38:453–460CrossRefGoogle Scholar
  172. Sun MK, Guyenet PG (1989); Effects of vasopressin and other neuropeptides on rostral medullary sympathoexcitatory neurons in vitro. Brain Res 492:261–270CrossRefGoogle Scholar
  173. Swaab DF, Nijveldt F, Pool CW (1975): Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J Endocrinol 67:461–462CrossRefGoogle Scholar
  174. Swank MW, Dorsa DM (1991): Chronic treatment with vasopressin analogues alters affinity of vasopressin receptors in the septum and amygdala of the rat brain. Brain Res 544:342–344CrossRefGoogle Scholar
  175. Swanson LW (1976): The locus coeruleus: A cytoarchitectonic, Golgi and immunohis-tochemical study in the albino rat. Brain Res 110:39–56CrossRefGoogle Scholar
  176. Swanson LW, Kuyper HGJM (1980): The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double labeling methods. J Comp Neurol 194:555–570CrossRefGoogle Scholar
  177. Swords BH, Wyss JM, Berecek KH (1991): Vasopressin and vasopressin receptors are enhanced in the central nervous system in deoxycorticosterone-NaCl hypertension. In: Vasopressin, Jard S, Jamison R, eds. Paris: Colloque Inserm/John Libbey Eurotext LtdGoogle Scholar
  178. Tan DP, Tsou K (1986): New evidence for neuronal function of vasopressin: Sympathetic mediation of intrathecal vasopressin-induced hypertension. Peptides 7:569–572CrossRefGoogle Scholar
  179. Thrasher TN, Ramsay DJ (1991): Anatomy of osmoreception. In: Vasopressin, Jard S, Jamison R, eds. Paris: Colloque Inserm/John Libbey Eurotext LtdGoogle Scholar
  180. Tribollet E, Armstrong WE, Dubois-Dauphin M, Dreifuss JJ (1985): Extrahypothalamic afferent inputs to the supraoptic nucleus area of the rat as determined by retrograde and anterograde tracing techniques. Neuroscience 15:135–138CrossRefGoogle Scholar
  181. Tucker DC, Saper CB, Ruggiero DA, Reis DJ (1987): Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to hypothalamus and spinal cord. J Comp Neurol 259:591–603CrossRefGoogle Scholar
  182. Undesser KP, Hasser EM, Haywood JR, Johnson AK, Bishop VS (1985): Interactions of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits. Circ Res 56:410–417Google Scholar
  183. Unger T, Kaufman-Buhler I, Scholkens BA, Ganten D (1981): Brain converting enzyme inhibition: A possible mechanism for the antihypertensive action of Captopril in spontaneously hypertensive rats. Eur J Pharmacol 70:476–478CrossRefGoogle Scholar
  184. Unger T, Rohmeiss P, Becker H, Ganten D, Lang RE, Petty M (1984): Sympathetic activation following central vasopressin receptor stimulation in conscious rats. J Hypertens 2(Suppl 3):25–27Google Scholar
  185. Unger T, Rohmeiss P, Demmert G, Ganten D, Lang RE, Luft FC (1986): Differential modulation of the baroreceptor reflex by brain and plasma vasopressin. Hypertension 8(Suppl II):II–157–II–162Google Scholar
  186. Urban IJA, De Wied D (1986): Effect of vasopressin, oxytocin and peptides derived from these hormones on field potential induced in lateral septum of rats by stimulation of the fimbria fornix. Neuropeptides 7:41–49CrossRefGoogle Scholar
  187. Urban JH, Miller MA, Dorsa DM (1991): Dexamethasone-induced suppression of vasopressin gene expression in the bed nucleus of the stria terminalis and medial amygdala is mediated by changes in testosterone. Endocrinol 128:109–116CrossRefGoogle Scholar
  188. Vallejo M, Carter DA, Lightman SL (1984): Hemodynamic effects of arginine-vasopressin microinjections into the nucleus tractus solitarius: A comparative study of vasopressin, a selective vasopressin receptor agonist and antagonist and oxytocin. Neurosci Lett 44:229–234CrossRefGoogle Scholar
  189. Vallejo M, Lightman SL (1987): Evidence for a functional relationship between noradrenaline and neurohypophysial peptides in the brain stem of rats. Brain Res 422:295–302CrossRefGoogle Scholar
  190. Vallotton MB (1991): The multiple faces of the vasopressin receptors. Mol Cell Endocrinol 78:C73–C76CrossRefGoogle Scholar
  191. Van den Dungen HM, Buijs RM, Pool CW, Terlou M (1982): The distribution of vasotocin and isotocin in the brain of rainbow trout. J Comp Neurol 212:146–157CrossRefGoogle Scholar
  192. Van Leeuwen FW, van der Beek EM, van Heerikhuize JJ, Wolters P, van der Meuten G, Wan YP (1987): Quantitative light microscopic autoradiographic localization of [3H] binding sites labeled with 3H VP antagonist d(CH2)5 Tyr (Me) VP in rat brain, pituitary and kidney. Brain Res 80:121–126Google Scholar
  193. Van Tol HHM, van den Buuse M, de Jong W, Burbach JPH (1988): Vasopressin and oxytocin gene expression in supraoptic and paraventricular nucleus of the spontaneously hypertensive rat (SHR) during development of hypertension. Mol Brain Res 4:303–311CrossRefGoogle Scholar
  194. Versteeg CAM, Cransberg K, de Jong W, Bohus B (1983): Reduction of a centrally induced pressor response by neurohypophysial peptides: The involvement of lower brain stem mechanisms. Eur J Pharmacol 94:133–140CrossRefGoogle Scholar
  195. Wang BC, Share L, Crofton JT (1982): Central infusion of vasopressin decreased plasma vasopressin concentration in dogs. Am J Physiol 243:E365–E369Google Scholar
  196. Weindl A, Sofroniew MW (1980): Immunohistochemical localization of hypothalamic peptide hormones in neural target areas. In: Brain and Pituitary Peptides, Wuttke W, Weindl A, Voigt KG, Dries R-R, eds. Basel: S KargerGoogle Scholar
  197. Weindl A, Sofroniew M (1985): Neuroanatomical pathways related to vasopressin. In: Neurobiology of Vasopressin, Ganten D, Pfaff D, eds. Berlin: Springer-VerlagGoogle Scholar
  198. Weiss ML, Hatton GI (1990): Collateral input of the paraventricular and supraoptic nuclei in rat. I. Afferents from the subfornical organ and the anteroventral third ventricle region. Brain Res Bull 24:231–238CrossRefGoogle Scholar
  199. Yamashita H (1977): Effect of baro-and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus. Brain Res 125:551–556CrossRefGoogle Scholar
  200. Zerbe RL, Feuerstein G (1985): Cardiovascular effects of centrally administered vasopressin in conscious and anesthetized rats. Neuropeptides 6:471–484CrossRefGoogle Scholar
  201. Zerbe RL, Palkovits M (1984): Changes in vasopressin content of discrete brain regions in response to stimuli for vasopressin secretion. Neuroendocrinology 38:285–289CrossRefGoogle Scholar
  202. Zerihun L, Harris M (1981): Electrophysiological identification of neurons of the paraventricular and supraoptic nucleus sending axons to both the neurohypophysis and medulla in the rat. Neurosci Lett 23:157–160CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1992

Authors and Affiliations

  • Kathleen H. Berecek

There are no affiliations available

Personalised recommendations