Plants, Their Pollinating Bees, and the Great American Interchange

  • Beryl B. Simpson
  • John L. Neff
Part of the Topics in Geobiology book series (TGBI, volume 4)


The “Great American Interchange” refers to the mixing of North and South American faunas following the emergence of the Panamanian land bridge (Marshall et al., 1982) about 3–3.5 million years ago. The unequivocal paleontological documentation of the exchange of mammals in the post-land bridge period has led to the tacit assumption that the closing of the Panama gap was as important for other groups of organisms as it was for mammals. In the case of plants, such an assumption may not be warranted. However, paleobotanical evidence across the Pliocene-Pleistocene boundary is poor compared to that of vertebrates in general, and there is practically no fossil plant material from Central America or from lowland regions of tropical South America. In our assessment of the effects of the closing of the Panama portal on New World plant distributions, we therefore take an ecological approach to show that the formation of a land corridor per se had mixed effects on exchanges of North and South American elements.


Desert Scrub Larrea Divaricata Warm Desert Tropical Flora Mediterranean Scrub 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, J. W., and Sinnott, E. W., 1915, A botanical index of Cretaceous and Tertiary climates, Science 41:831–834.PubMedCrossRefGoogle Scholar
  2. Beaman, J. H., and Andresen, J. W., 1966, The vegetation, floristics, and phytogeography of the summit of Cerro Potosi, Mexico, Am. Midl. Nat. 75:1–33.CrossRefGoogle Scholar
  3. Bradbury, D. E., 1981, The physical geography of the mediterranean lands, in: Mediterranean-Type Shrublands, Ecosystems of the World, Volume 11, (F. di Castri, D. W. Goodall, and R. L. Specht, eds.), Elsevier, New York, pp. 53–62.Google Scholar
  4. Burkart, A., 1976, A monograph of the genus Prosopis (Leguminosae,subfamily Mimisoideae), J. Arnold Arb. 57:219–530.Google Scholar
  5. Cabrera, A. 1968, Ecología vegetal de la puna, in: Geo-ecology of the Mountainous Regions of the Tropical Americas, Colloquium Geographicum (Bonn) Volume 9 (C. Troll, ed.), pp. 91–116.Google Scholar
  6. Castri, F. di., 1981, Mediterranean-type shrublands of the world, in: Mediterranean-Type Shrublands, Ecosystems of the World, Volume 11 (F. di Castri, D. W. Goodall, and R. L. Specht, eds.), Elsevier, New York, pp. 1–52.Google Scholar
  7. Cleef, A. M., 1979, The phytogeographical position of the Neotropical vascular Paramo flora with special reference to the Colombian Cordillera Oriental, in: Tropical Botany (K. Larsen and L. B. Holm-Nielsen, eds.), Academic Press, New York, pp. 175–184.Google Scholar
  8. Cleef, A. M., 1981, The Vegetation of the Paramos of the Colombian Cordillera Oriental. Dissertationes Botanicae 61. Cramer, Vaduz.Google Scholar
  9. Cody, W. L., Fuentes, E. R., Glanz, W., Hunt, J. H., and Moldenke, A. R., 1977, Convergent evolution in the consumer organisms of mediterranean Chile and California, in: Convergent Evolution in Chile and California (H. A. Mooney, ed.), Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania, pp. 144–192.Google Scholar
  10. Coney, P. J., 1982, Plate tectonic constraints on the biogeography of Middle America and the Caribbean region, Ann. Missouri Bot. Gard. 69:432–443.CrossRefGoogle Scholar
  11. Constance, L., 1963, Amphitropical relationships in the herbaceous flora of the Pacific coast of North and South America: A symposium. Introduction and historical review, Q. Rev. Biol. 38:109–116.CrossRefGoogle Scholar
  12. Cookson, I. C., 1954, The Cainozoic occurrence of Acacia in Australia, Austr. J. Bot. 2:52–59.CrossRefGoogle Scholar
  13. Croat, T. B., 1978, Flora of Barro Colorado Island. Stanford University Press, Stanford, California.Google Scholar
  14. Cuatrecasas, J., 1958, Aspectos de la vegetacion natural de Colombia. Rev. Acad. Colomhiana Cien. Exact. Fis. Nat. 10:221–268.Google Scholar
  15. Dressier, R. L., 1968, Pollination by euglossine bees, Evolution 22:202–210.CrossRefGoogle Scholar
  16. Eickwort, G. C., 1969, A comparative morphological study and generic revision of the augochlorine bees (Hymenoptera: Halictidae), Univ. Kansas Sci. Bull. 48:325–524.Google Scholar
  17. Frankie, G. W., 1976, Pollination of widely dispersed trees by animals in Central America, with an emphasis on bee pollination systems, in: Variation, Breeding, and Conservation of Tropical Forest Trees (J. Burley and B. T. Styles, eds.), Academic Press, London, pp. 151–159.Google Scholar
  18. Gentry, A. H., 1981, Patterns of neotropical plant species diversity, in: Evolutionary Biology, Volume 15 (M. K. Hecht, W. C. Steere, and B. Wallace, eds.), Plenum Press, New York, pp. 1–84.Google Scholar
  19. Gentry, A. H., 1982, Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations or an accident of the Andean orogeny? Ann. Missouri Bot Gard. 69:557–593.CrossRefGoogle Scholar
  20. Graham, A., 1973, History of the arborescent temperate element in the northern Latin American biota, in: Vegetation and Vegetational History of Northern Latin America (A. Graham, ed.), Elsevier, New York, pp. 301–314.Google Scholar
  21. Graham, A., 1976, Studies in Neotropical paleobotany. II. The Miocene communities of Veracruz, Mexico, Ann. Missouri Bot. Gard. 63:787–842.CrossRefGoogle Scholar
  22. Graham, A., and Jarzen, D. M., 1969, Studies in neotropical paleobotany. 1. The Oligocene communities of Puerto Rico, Ann. Missouri Bot. Gard. 56:308–357.CrossRefGoogle Scholar
  23. Gray, A., and Hooker, J. D., 1880, The vegetation of the Rocky Mountain region, and a comparison with that of other parts of the world, Bull. U. S. Geol. Geogr. Survey 6:1–77.Google Scholar
  24. Haffer, J., 1974, Avian Speciation in Tropical South America, Publ. Nuttall ornithological Club, Volume 14, Cambridge, Massachusetts, 390 pp.Google Scholar
  25. Heithaus, E. R., 1974, The role of plant-pollinator interactions in determining community structure, Ann. Missouri Bot. Gard 61:675–691.CrossRefGoogle Scholar
  26. Hitchcock, C. L., 1932, A monographic study of the genus Lycium of the Western Hemisphere, Ann. Missouri Bot. Gard. 19:179–358.CrossRefGoogle Scholar
  27. Howard, R. A., 1973, The vegetation of the Antilles, in: Vegetation and Vegetational History of Northern Latin America (A. Graham, ed.), Elsevier, New York, pp. 1–38.Google Scholar
  28. Hunziker, J. H., 1975, On the geographical origin of Larrea divaricata (Zygophyllaceae), Ann. Missouri Bot. Gard. 62:497–500.CrossRefGoogle Scholar
  29. Hurd, P. D., Jr., and Linsley, E. G., 1975, The principal Larrea bees of the southwestern united States (Hymenoptera: Apoidea), Smithson. Contr. Zoo. 193:1–74.CrossRefGoogle Scholar
  30. Irwin, H. S., and Barneby, R. C., 1982, The American Cassiinae: A synoptical revision of the Leguminosae tribe Cassieae subtribe in the New World, Mem. New York Bot. Gard. 35:1–918.Google Scholar
  31. Janzen, D. H., 1975, Ecology of Plants in the Tropics, Edwin Arnold, London.Google Scholar
  32. Kimsey, L. S., 1982, Systematics of bees of the genus Eufriesia, Univ. Calif. Publ. Entomol. 95:1–125.Google Scholar
  33. Knapp, R., 1965, Die Vegetation von Nord-und Mittelamerika, Fisher Verlag, Stuttgart, 373 pp.Google Scholar
  34. Lauer, W., 1968, Problemas de la division fitogeográfica en América Central, in: Geo-ecology of the Mountainous Regions of the Tropical Americas, Colloquium Geographicum (Bonn) Volume 9, (C. Troll, ed.), pp. 139–156.Google Scholar
  35. Marshall, L. G., Webb, S. D., Sepkoski, J. J., Jr., and Raup, D. M., 1982, Mammalian evolution and the great American interchange, Science 215:1351–1357.PubMedCrossRefGoogle Scholar
  36. Martin, P. S., Sabels, B. E., and Shutter, D., Jr., 1961, Rampart cave caprolites and ecology of the shasta ground sloth, Am. J. Sci. 295:106–127.Google Scholar
  37. Meigs, P., 1953, World distribution of arid and semi-arid homoclimates, in: Arid Zone Programme 1: Review of Research on Arid Zone Hydrology, UNESCO, Firmin-Didot, Co., Paris, pp. 203–210.Google Scholar
  38. Michener, C. D., 1954, Bees of Panama, Bull. Am. Mus. Nat. Hist 104:1–176.Google Scholar
  39. Michener, C. D., 1963, The bee genus Eulonchopria (Hymenoptera: Colletidae), Ann. Entomol. Soc. Am. 56:844–849.Google Scholar
  40. Michener, C. D., 1979, Biogeography of the bees, Ann. Missouri Bot. Gard. 66:277–347.CrossRefGoogle Scholar
  41. Mildenhall, D. C., 1972, Fossil pollen of Acacia type from New Zealand, New Zeal. J. Bot. 10:485–494.CrossRefGoogle Scholar
  42. Moldenke, A. R., 1976, Evolutionary history and diversity of bee faunas of Chile and Pacific North America, Wassmann J. Bot. 34:147–177.Google Scholar
  43. Moldenke, A. R., and P. G. Lincoln. 1979. Pollination ecology in Montane Colorado: A community analysis. Phytologia 42:349–379.Google Scholar
  44. Monasterio, M. 1981, Las formaciones vegetales de los paramos de Venezuela, in: Estudios Ecologicos en los Paramos Andinos (M. Monasterio, ed.), Universidad de Los Andes, Merida, Venezuela, pp. 93–158.Google Scholar
  45. Moore, D., 1983, The flora of the Fuego-Patagonian cordilleras: its origins and affinities, Rev. Chilena Hist. Nat. 56:123–136.Google Scholar
  46. Müller, P., and Schmithüsen, J., 1970, Probleme der Genese Südamerikanischer Biota. Deutsche geographioche Forschung in der Welt von Heute. Festschrift für Ewin Gentz, pp. 109–122.Google Scholar
  47. Muller, J., 1981, Fossil pollen records of extant angiosperms, Bot. Rev. 47:1–142.CrossRefGoogle Scholar
  48. Nahal, H., 1981, The mediterranean climate from a biological viewpoint, in: Mediterranean-type Shrublands, Ecosystems of the World, Volume 11 (F. di Castri, D. W. Goodall, and R. L. Specht, eds.), Elsevier, New York, pp. 63–86.Google Scholar
  49. Neff, J. L., and Simpson, B. B., 1981, Oil-collecting structures in the Anthophoridae (Hymenoptera): Morphology, function, and use in systematics, J. Kansas Ent. Soc. 54:95–123.Google Scholar
  50. Piel, K. M., 1971, Palynology of Oligocene sediments from central British Columbia, Can. J. Bot. 49:1885–1920.CrossRefGoogle Scholar
  51. Pires, J. M., 1978, The forest ecosystem of the Brazilian Amazon: Description, functioning and research needs, in: Tropical Forest Ecosystems, UNESCO/UNEP/FAO, UNESCO, Paris, pp. 607–627.Google Scholar
  52. Porter, D. M., 1973, The vegetation of Panama: A review, in: Vegetation and Vegetational History of Northern Latin America (A. Graham, ed.), Elsevier, New York, pp. 167–201.Google Scholar
  53. Porter, D. M., 1974, Disjunct distributions in the New World Zygophyllaceae, Taxon 23:339–346.CrossRefGoogle Scholar
  54. Prance, G. T., 1978, The origin and evolution of the Amazon flora, Interciencia 3:207–222.Google Scholar
  55. Raven, P. H., 1963, Amphitropical relationships in the floras of North and South America, Q. Rev. Biol. 38:151–177.CrossRefGoogle Scholar
  56. Raven, P. H., 1973, The evolution of Mediterranean floras, in: Mediterranean-type Shrublands, Ecosystems of the World, Volume 11 (F. di Castri, D. W. Goodall, and R. L. Specht, eds.), Elsevier, New York, pp. 213–224.CrossRefGoogle Scholar
  57. Raven P. H., and Axelrod, D. L, 1974, Angiosperm biogeography and past continental movements, Ann. Missouri Bot. Gard, 61:593–673.Google Scholar
  58. Romero, E. J., 1978, Paleoecologia y paleofitogeografîa de las tafofloras del cenofitico de Argentina y areas vecinas, Ameghiniana 15:209–227.Google Scholar
  59. Rosen, D. E., 1972, A vicariance model of Caribbean biogeography, Syst. Zool. 24:431–464.CrossRefGoogle Scholar
  60. Roubik, D. W., 1979, Africanized honey bees, stingless bees, and the structure of tropical plant-pollinator communities, Proc. IVth Symp. Pollination. Maryland Exp. Sta. Spec. Misc. Publ. 1:403–417.Google Scholar
  61. Ruthsatz, B., 1977, Pflanzengesellschaften und ihre Lebensbedingungen in den Andinen Halbwüsten Nordwest-Argentiniens, Dissertationes Botanicae 39:1–168.Google Scholar
  62. Rzedowski, J, 1973, Geographical relationships of the flora of the Mexican dry regions, in: Vegetation and Vegetational History of Northern Latin America (A. Graham, ed.), Elsevier, New York, pp. 61–72.Google Scholar
  63. Rzedowski, J., 1978, Vegetaciòn de Mèxico, Editorial Limusa, Mexico City, Mexico, 432 pp.Google Scholar
  64. Sakagami, S. F., 1982, Stingless bees, in: Social Insects, Volume 3 (H. R. Herman, ed.), Academic Press, New York, pp. 361–423.Google Scholar
  65. Sarmiento, G., 1972, Ecological and floristic convergences between seasonal plant formations of tropical and subtropical South America, J. Ecol. 60:367–410.CrossRefGoogle Scholar
  66. Sarmiento, G., 1975, The dry plant formations of South America and their floristic connections, J. Biogeogr. 2:233–251.CrossRefGoogle Scholar
  67. Sarmiento, G., 1976, Evolution of arid vegetation in tropical America, in: Evolution of Desert Biota (D. W. Goodall ed.) University of Texas Press, Austin, pp. 65–99.Google Scholar
  68. Simpson, B. B., 1975, Pleistocene changes in the flora of the high tropical Andes, Paleobiology 1:273–294.Google Scholar
  69. Simpson, B. B., 1979, Quaternary biogeography of the high montane regions of South America, in: The South American Herpetofauna: Its Origins, Evolution, and Dispersal (W. E. Duellman, ed.), University of Kansas Press, Lawrence, pp. 157–188.Google Scholar
  70. Simpson, B. B., 1983, An historical phytogeography of the high Andean flora, Rev. Chilena Hist. Nat. 56:109–122.Google Scholar
  71. Simpson, B. B., Neff, J. L., and Moldenke, A. R., 1977a, Prosopis flowers as a resource, in: Mesquite: Its Biology in Two Desert Ecosystems (B. B. Simpson, ed.), Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania, pp. 84–107.Google Scholar
  72. Simpson, B. B., Neff, J. L., and Moldenke, A. R., 1977b, Reproductive systems of Larrea, in: Creosote Bush: Biology and Chemistry of Larrea in New World Deserts (T. J. Mabry, J. H. Hunziker, and D. R. Difeo, Jr., eds.), Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania, pp. 92–114.Google Scholar
  73. Snelling, R. R., 1983, The North American species of the bee genus Lithurge (Hymenoptera: Megachilidae), Los Angeles County Mus. Nat Hist Contr. Sci. 343:1–11.Google Scholar
  74. Snelling, R. R., 1984, Studies on the taxonomy of American centridine bees (Hymenoptera: Anthophoridae], Contr. Sci. Los Angeles County Mus. Nat. Hist. 347:1–69.Google Scholar
  75. Thrower, N. J., and Bradbury, D. E., 1973, The physiography of the Mediterranean lands with special emphasis on California and Chile, in: Mediterranean Type Ecosystems (F. di Castri and H. Mooney, eds.), Springer-Verlag, New York, pp. 37–52.CrossRefGoogle Scholar
  76. Troll, C., 1968, The cordillera of the tropical mountains, in: Geo-ecology of the Mountainous Regions of the Tropical Americas, Colloquium Geographicum (Bonn) Volume 9 (C. Troll, ed.), pp. 15–56.Google Scholar
  77. van der Hammen, Th., 1972, Historia de la vegetaciòn y el medio ambiente del norte sudamericano, in: Memorias Symposio Primo Congresso Latinoamericano y Cinquinta Mexicano de Botanica, pp. 119–134.Google Scholar
  78. van der Hammen, Th., and Cleef, A. M., 1983, Datos para la historia de la flora Andina, Rev. Chilena Hist. Nat. 56:97–107.Google Scholar
  79. van der Hammen, Th., Werner, H., and van Dommelen, H., 1973, Palynological record of the upheaval of the northern Andes: A study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its high-Andean biota, Rev. Palaeobot. Palynol. 16:1–22.CrossRefGoogle Scholar
  80. van Devender, T. R., and Spaulding, W. G., 1979, Development of vegetation and climate in the southwestern United States, Science 204:701–710.PubMedCrossRefGoogle Scholar
  81. Vogel, St., 1974, Olblumen und olsammelnde Bienen, Akad. Wissen. Literature Math-Naturwiss. Tropische und subtropische Pflanzenwelt 7:1–267.Google Scholar
  82. Weber, H., 1959, Los paramos de Costa Rica y su Concatenacion Fitogeografica con los Andes Suramericanos, Inst. Geografico de Costa Rica, San Jose, Costa Rica, 71 pp.Google Scholar
  83. Weberbauer, A., 1945, El Mundo Vegetal de Los Andes Peruanos, Minist. Agric, Lima, Peru, 776 pp.Google Scholar
  84. Wells, P. V., and Hunziker, J. H., 1976, Origin of the creosote bush (Larrea) desert of southwestern North America, Ann. Missouri Bot. Gard. 63:843–861.CrossRefGoogle Scholar
  85. Willie, A., 1959, A new fossil stingless bee (Meliponini) from the amber of Chiapas, Mexico, J. Paleontol. 33:849–852.Google Scholar
  86. Willie, A., and Chandler, L. C., 1964, A new stingless bee from the Tertiary amber of the Dominican Republic (Hymenoptera: Meliponini), Rev. Biol. Trop. 12:187–195.Google Scholar
  87. Williams, N. H., 1983, Floral fragrances in animal behavior, in: Handbook of Experimental Pollination Biology (C. E. Jones and R. J. Little, eds.), van Nostrand-Reinhold, New York, pp. 50–72.Google Scholar
  88. Winston, M. L., 1979, The proboscis of the long-tongued bees: A comparative study, Univ. Kansas Sci. Bull. 51:631–667.Google Scholar
  89. Yamane, G. M., and Nakasone, K. Y., 1961, Pollination and fruit set studies of acerola, Malpighia glabra L. in Hawaii, Proc. Am. Soc. Hort. Sci. 78:141–148.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Beryl B. Simpson
    • 1
  • John L. Neff
    • 1
  1. 1.Department of BotanyUniversity of TexasAustinUSA

Personalised recommendations