Sea Level, Climate, and the Central American Land Bridge

  • Samuel M. Savin
  • Robert G. Douglas
Part of the Topics in Geobiology book series (TGBI, volume 4)


The development of a land connection across Central America in Neogene time permitted the interchange of terrestrial faunas between North and South America. It also prevented the flow of tropical seawater from the Atlantic to the Pacific Ocean. At the present time there are two low-lying regions that traverse Central America between the two oceans, one in northern Costa Rica and southern Nicaragua and the other across Panama. Today both of these regions would be awash if sea level were only moderately higher—34 m for the northern passage and 84 m for the southern (neglecting the excavations for the Panama Canal). It is possible that crustal motions during the past 15 million years have altered the topography of these two low-lying regions. However, it is fair to say that realistic estimates of eustatic sea level indicate that sea level lowering was an important (perhaps the most important) cause of the emergence of the land connection.


Late Miocene Benthic Foraminifera Oxygen Isotope Ratio Planktic Foraminifera DSDP Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. G., Benson, R. H., Kidd, R. B., Ryan, W. B. F., and Wright, R. C., 1977, The Messinian salinity crisis and evidence of late Miocene eustatic changes in the world ocean, Nature 269:383–386.CrossRefGoogle Scholar
  2. Bandy, O. L., 1970, Upper Cretaceous-Cenozoic paleobathymetric cycles, eastern Panama and northern Columbia, Trans. Gulf Coast Assoc. Geol. Soc. 20:181–193.Google Scholar
  3. Barron, E.J., and Washington, W. M., 1984, The role of geographic variables in explaining paleocli-mates: Results from Cretaceous climate model sensitivity studies, J. Geophys. Res. 89:1267–1279.CrossRefGoogle Scholar
  4. Berggren, W. A., 1972, Late Pliocene-Pleistocene glaciation, in A. S. Initial Reports of the Deep Sea Drilling Project (A. S. Laughton, W. A. Berggren et al., eds.) Washington (U.S. Government Printing Office), 12:953–963.Google Scholar
  5. Blackwelder, B. W., Pilkey, O. H., and Howard, J. D., 1979, Late Wisconsinsa sea levels on the southeast U.S. Atlantic shelf based on in-place shoreline indicators, Science 204:618–620.PubMedCrossRefGoogle Scholar
  6. Boersma, A., and Shackleton, N. J., 1977, Tertiary oxygen and carbon isotope stratigraphy, Site 357 (mid-latitude south Atlantic), in: Initial Reports of the Deep Sea Drilling Project (P. R. Supko and K. Perch-Nielsen et al, eds.) Washington (U.S. Government Printing Office) 39:911–924.Google Scholar
  7. Boersma, A., and Shackleton, N. J., 1978, Oxygen and carbon isotope record through the Oligocène, DSDP Site 366, equatorial Atlantic, in: Initial Reports of the Deep Sea Drilling Project (Y. Lancelot and E. Siebold et al, eds.), Washington (U.S. Government Printing Office) 41:957–962.Google Scholar
  8. Cita, M. B., 1979, Lacustrine and hypersaline deposits in the desiccated Mediterranean and their bearing on paleoenvironment and paleo-ecology, in: Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, Maurice Ewing Series 3 (M. Talwani, W. Hay, and W. B. F. Ryan, eds.), American Geophysical Union, Washington, D.C., pp. 402–419.Google Scholar
  9. Dansgaard, W., Johnsen, S. J., Clausen, H. B., and Gundestrup, N., 1973, Stable isotope glaciology, Meddelelser om Grønland 197(2):l-53.Google Scholar
  10. Davies, T. A. and Worsley, T. R., 1981, Paleoenvironmental implications of oceanic carbonate sedimentation rates, in: The Deep Sea Drilling Project: A Decade of Progress (J. E. Warme, R. G. Douglas and E. L. Winterer, eds.), Society of Economic Paleontolgists and Mineralogists Special Publication 32:169–179.Google Scholar
  11. Denton, G. H., Prentice, M. L., Kellogg, D. E., and Kellogg, T. B., 1984, Late Tertiary history of the Antarctic ice sheet: Evidence from the Dry Valleys, Geology 12:263–267.CrossRefGoogle Scholar
  12. Douglas, R. G. and Savin, S. M., 1973, Oxygen and carbon isotope analyses of Cretaceous and Tertiary foraminifera from the Central north Pacific, in: Initial Reports of the Deep Sea Drilling Project (E. L. Winterer and J. I. Ewing, eds.), Washington (U.S. Government Printing Office), 17:591–605.Google Scholar
  13. Douglas, R. G., and Savin, S. M., 1975, Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the north Pacific Ocean, in: Initial Reports of the Deep Sea Drilling Project (R. L. Larson and R. Moberly et al., eds.), Washington (U.S. Government Printing Office), 32:509–520.Google Scholar
  14. Emiliani, C., 1955, Pleistocene temperatures, J. Geol. 63:538–578.CrossRefGoogle Scholar
  15. Epstein, S., and Mayeda, T., 1954, Variation of O18 content of waters from natural sources, Geochim. Cosmochim. Acta 4:213–224.CrossRefGoogle Scholar
  16. Flint, R. F., 1971, GlaciaJ and Quaternary Geology, John Wiley and Sons, New York.Google Scholar
  17. Fofonoff, N. P., 1962, Physical properties of sea-water, in: The Sea, Volume 1 (M.N. Hill, ed.), Inter- science Publishers, New York, pp. 3–30.Google Scholar
  18. Harrison, G. G. A., Brass, G. W., Saltzman, E., Sloan, J., Southam, J., and Whitman, J. M., 1981, Sea level variations, global sedimentation rates and the hypsographic curve, Earth Planet. Sci. Lett. 54:1–16.CrossRefGoogle Scholar
  19. Hays, J. D., and Pitman, W. C., III, 1973, Lithospheric plate motions, sea-level changes and climatic and ecologic consequences, Nature 246:18–22.CrossRefGoogle Scholar
  20. Holland, H. D., 1984, The Chemical Evolution of the Atmosphere and Oceans, Princeton University Press, Princeton, N.J.Google Scholar
  21. Keigwin, L. D., Jr., 1979, Late Cenozoic stable isotope stratigraphy and paleoceanography of DSDP sites from the east equatorial and central north Pacific Ocean, Earth Planet. Sci. Lett. 45:361–382.CrossRefGoogle Scholar
  22. Keigwin, L. D., Jr., 1980, Paleoceanographic change in the Pacific at the Eocene-Oligocene boundary, Nature 287:722–725.CrossRefGoogle Scholar
  23. Keigwin, L. D., Jr., 1982, Isotopic paleoceanography of the Caribbean and east Pacific: Role of Panama uplift in late Neogene time, Science 217:350–353.PubMedCrossRefGoogle Scholar
  24. Keigwin, L. D., Jr., and Keller, G., 1984, Middle Oligocene cooling from equatorial Pacific DSDP Site 77b, Geology 12:16–19.CrossRefGoogle Scholar
  25. Kennett, J. P., and Shackleton, N. J., 1976, Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago, Nature 260:513–515.CrossRefGoogle Scholar
  26. Kennett, J. P., and Thunnell, R. C., 1977, On explosive Cenozoic volcanism and climatic implications, Science 196:1231–1234.PubMedCrossRefGoogle Scholar
  27. LeMasurier, W. E., and Rex, D. C., 1982, Volcanic record of Cenozoic glacial history in Marie Byrd Land and Western Ellsworth Land, II, Revised chronology and evaluation of tectonic factors, in: Antarctic Geosciences (C. Craddock, ed.), University of Wisconsin Press, Madison, pp. 725–734.Google Scholar
  28. Matthews, R. A., and Poore, R. Z., 1980, Tertiary SO18 record and glacioeustatic sealevel fluctuations, Geology 8:501–504.CrossRefGoogle Scholar
  29. Miller, K. G. and Curry, W. B., 1982, Eocene to Oligocene benthic foraminiferal isotopic record in the Bay of Biscay, Nature 296:347–352.CrossRefGoogle Scholar
  30. Miller, K. G., and Fairbanks, R. G., 1983, Evidence for Oligocene-middle Miocene abyssal circulation changes in the western north Atlantic, Nature 306:250–253.CrossRefGoogle Scholar
  31. Milliman, J. D. and Emery, K. O., 1968, Sea levels during the past 35,000 years, Science 162:1121–1123.PubMedCrossRefGoogle Scholar
  32. Mix, A. C., and Ruddiman, W. F., 1984, Oxygen-isotope analyses and Pleistocene ice volumes, Quat. Res. 21:1–20.Google Scholar
  33. Pitman, W. C., III, 1978, Relationship between eustacy and stratigraphie sequences of passive margins, Geol. Soc. Am. Bull. 89:1389–1403.CrossRefGoogle Scholar
  34. Poore, R. Z., and Matthews, R. K., 1984, Oxygen isotope ranking of late Eocene and Oligocène plank-tonic foraminifers: Implications for Oligocene sea-surface temperatures and global ice volume, Marine Micropaleontol. 9:111–134.CrossRefGoogle Scholar
  35. Rabussier Lointier, D., 1980, Variations de composition isotopique de l’oxygene et du carbone en milieu marin et coupures stratigraphiques du Cenozoique, Thesis, L’universite Pierre et Marie Curie, Paris.Google Scholar
  36. Ronov, A. B., 1968, Probable changes in the composition of seawater during the course of geologic time, Sedimentology 10:25–43.CrossRefGoogle Scholar
  37. Ryan, W. B. F., 1973, Geodynamic implications of the Messinian crisis in salinity, in: Messinian Events in the Mediterranean (C. W. Drooger, ed.), North Holland, Amsterdam, pp. 26–38.Google Scholar
  38. Ryan, W. B. F., Hsu, K. J. et al, 1973, Initial Reports of the Deep Sea Drilling Project, Volume 13, Washington, U.S. Government Printing Office.Google Scholar
  39. Savin, S. M., Douglas, R. G., and Stehli, F. G., 1975, Tertiary marine paleotemperatures, Geol. Soc. Am. Bull. 86:1499–1510.CrossRefGoogle Scholar
  40. Savin, S. M., Douglas, R. G., Keller, G., Killingley, J. S., Shaughnessy, L., Sommer, M. A., Vincent, E., and Woodruff, F., 1981, Miocene benthic foraminiferal isotope records: a synthesis, Marine Micropaleontol. 6:423–450.CrossRefGoogle Scholar
  41. Schlanger, S. O., and Premoli-Silva, I., 1981, Tectonic, volcanic and paleogeographic implications of redeposited reef faunas of late Cretaceous and Tertiary age from the Nauru Basin and the Line Islands, in: Initial Reports of the Deep Sea Drilling Project (R. L. Larson and S. O. Schlanger et al, eds.), Washington (U.S. Government Printing Office) 61:817–827.Google Scholar
  42. Schlanger, S. O., Jenkyns, H. C., and Premoli-Silva, L, 1981, Volcanism and vertical tectonics in the Pacific Basin as related to global Cretaceous transgressions, Earth Planet. Sci. Lett. 52:435–449.CrossRefGoogle Scholar
  43. Shackleton, N. J., 1982, The deep sea sediment record of climate variability, Prog. Ocecmogr. 11:199–218.Google Scholar
  44. Shackleton, N. J. and Cita, M. B., 1979, Oxygen and carbon isotope stratigraphy of benthic foraminifers at Site 397: Detailed history of climatic change during the late Neogene, in: Initial Reports of the Deep Sea Drilling Project (U. von Rad, W. B. F. Ryan et al., eds.), Washington (U.S. Government Printing Office) 47(I):433–445.Google Scholar
  45. Shackleton, N. J., and Kennett, J. P. 1975a, Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281, in: Initial Reports of the Deep Sea Drilling Project (J. P. Kennett, R. E. Houtz et al, eds.), Washington (U.S. Government Printing Office) 29:743–755.Google Scholar
  46. Shackleton, N. J. and Kennett, J. P., 1975b, Late Cenozoic oxygen and carbon isotopic changes at DSDP Site 284: Implications for the glacial history of the Northern Hemisphere and Antarctica, in: Initiai Reports of the Deep Sea Drilling Project (J. P. Kennett, R. E. Houtz et al., eds.), Washington (U.S. Government Printing Office) 29:801–807.Google Scholar
  47. Shackleton, N. J., and Opdyke, N. D., 1973, Oxygen isotopes and palaeomagnetic stratigraphy of equatorial Pacific Core V28–238:Oxygen isotope temperatures and ice volumes on a 105 and 106 year scale,J. Quat. Res. 3:39–55.CrossRefGoogle Scholar
  48. Shackleton, N. J., and Opdyke, N. D., 1976, Oxygen isotope and paleomagnetic stratigraphy of Pacific Core V28–239 late Pliocene to latest Pleistocene, in: Investigation of Late Quaternary Paleocean-ography, Paleoclimatology (R. M. Cline and J. D. Hays, eds.), Geological Society of America Memoir 145:449–464.Google Scholar
  49. Shackleton, N. J., and Opdyke, N. D., 1977, Oxygen isotope and paleomagnetic evidence for early northern hemisphere glaciation, Nature 270:216–219.CrossRefGoogle Scholar
  50. Shackleton, N. J., Hall, M. A., and Boersma, A., 1984, Oxygen and carbon isotope data from Leg 74 foraminifers, in: Initial Reports of the Deep Sea Drilling Project (T. R. Moore Jr., P. D. Robinowitz et al., eds.), Washington, (U.S. Government Printing Office) 74:599–619.Google Scholar
  51. Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942, The Oceans, Prentice-Hall, New York.Google Scholar
  52. Southam, J. R., and Hay, W. W., 1981, Global sedimentary mass balance and sea level changes, in: The Oceanic Lithosphère, (C. Emiliani, ed.), John Wiley and Sons, New York, pp. 1617–1684.Google Scholar
  53. Thiel, E., 1962, The amount of ice on planet Earth, in: Antarctic Research (H. Wexler, M. J. Rubin and J. E. Caskey, eds.), Geophysical Monograph No. 7, American Geophysical Union, pp. 172–175.Google Scholar
  54. Vail, P. R. and Hardenbol, J., 1977, Sea-level changes during the Tertiary, Oceanus 22:71–79.Google Scholar
  55. Vail, P. R., and Todd, R. G., 1981, Northern North Sea Jurassic unconformities, chronostratigraphy and sea-level changes from Scismic stratigraphy, in: Petroleum Geology of the Continental Shelf of North-West Europe, Institute of Petroleum, London, pp. 216–235.Google Scholar
  56. Vail, P. R., Mitchum, R. M., Jr., and Thompson, S., Ill, 1977, Scismic stratigraphy and global changes of sea level, Part 4: Global cycles of relative changes of sea level, in: Scismic StratigraphyApplications to Hydrocarbon Exploration (C. E. Payton, ed.), American Association of Petroleum Geologists Memoir 26:83–97.Google Scholar
  57. Webb, P. N., Harwood, D. M., McKelvey, B. C., Mercer, J. H., and Stott, L. D., 1984, Cenozoic marine sedimentation and ice-volume variation on the East Antarctic craton, Geology 12:287–2.CrossRefGoogle Scholar
  58. Weyl, P. K., 1968, The role of the oceans in climatic change: a theory of the ice ages, Meteorol. Monogr.8:37–62.Google Scholar
  59. Woodruff, F., and Savin, S. M., 1985, S13C values of Miocene Pacific benthic foraminifera: Correlations with sealevel and biological productivity, Geology 13:119–122.CrossRefGoogle Scholar
  60. Woodruff, F., Savin, S. M., and Douglas, R. G., 1981, Miocene stable isotope record: a detailed deep Pacific Ocean study and its paleoclimatic implications, Science 212:665–668.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Samuel M. Savin
    • 1
  • Robert G. Douglas
    • 2
  1. 1.Department of Geological SciencesCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Geological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations