Brownian Excursions Revisited

  • P. Salminen
Part of the Progress in Probability and Statistics book series (PRPR, volume 7)


There are two classical approaches to the theory of Brownian excursions. The first one goes back to Lévy. His ideas were worked out in greater detail and extended by Itô and McKean (see [4], [5], and [9]). Also Chung’s and Knight’s contributions are of great importance (see [1], [7], and [8]). In this approach the lengths of the excursions are the basic objects. In the second approach, due to Williams (see [12], [14], and [15]), one works with excursions having a given maximum. In both approaches Itô’s theory of excursions (see [3]) plays an active part (see [5], and [12]).


Brownian Motion Local Time Transition Density Bessel Process Strong Markov Property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. CHUNG. Excursions in Brownian Motion. Ark. Mat. 14, 155–177 (1976).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    R.K. GETOOR, M.J. SHARPE. Excursions of Brownian motion and Bessel processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 47, 83–106 (1979).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    K. ITÔ. Poisson point processes attached to Markov processes. Proc 6th Berkeley Symp. Math. Statist. Prob., Vol. 3, University of California Press, 225–240 (1971).Google Scholar
  4. 4.
    K. ITÔ, H. MCKEAN. Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin, 1965.MATHGoogle Scholar
  5. 5.
    N. IKEDA, S. WATANABE. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981.MATHGoogle Scholar
  6. 6.
    F.B. KNIGHT. Brownian local times and taboo processes. Trans. Amer. Math. Soc. 143, 173–185 (1969).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    F.B. KNIGHT. Essentials of Brownian motion and diffusion. Mathematical surveys 18. Providence, Rhode Island: Amer. Math. Soc. (1981).MATHGoogle Scholar
  8. 8.
    F.B. KNIGHT. On the excursion process of Brownian motion. Trans. Amer. Math. Soc. 258, 77–86 (1980).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    H. MCKEAN. Excursions of a non-singular diffusion. Z. Wahrscheinlichkeitstheorie veno. Gebiete 1, 230–239 (1963).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J. PITMAN, M. YOR. A decomposition of Bessel bridges. Z. Wahrscheinlichkeitstheorie verw. Gebiete 59, 425–457 (1982).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    J. PITMAN, M. YOR. Bessel Processes and infinitely divisible laws. Stochastic Integrals, Proc. LMS Durham Symposium, pp. 285–370, Lecture Notes in Math. 851. Springer-Verlag, Berlin, Heidelberg, New York, 1981.Google Scholar
  12. 12.
    L.C.G. ROGERS. Williams’ characterization of the Brownian excursion law: proof and applications. Séminaire de Probabilities XV, pp. 227–250. Lecture notes in Math. 850. Springer-Verlag, Berlin, Heidelberg, New York, 1981.Google Scholar
  13. 13.
    P. SALMINEN. One-dimensional diffusions and their exit spaces. To appear in Math. Scand.Google Scholar
  14. 14.
    D. WILLIAMS. Decomposing the Brownian path. Bull. Am. Math. Soc. 76, (1970) 871–873.MATHCrossRefGoogle Scholar
  15. 15.
    D. WILLIAMS. Diffusions, Markov processes and martingales, Vol. 1: Foundations. Wiley, New York, 1979.Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1984

Authors and Affiliations

  • P. Salminen
    • 1
  1. 1.Matematiska InstitutionenÅbo AcademiÅbo 50Finland

Personalised recommendations