Microscopic Liquid Crystal Theory of Nematic Reentrance, Smectic C Ordering, and In-Plane Domain Formation

  • R. R. Netz
  • A. N. Berker
Part of the NATO ASI Series book series (NSSB, volume 290)


The frustrated spin-gas model with dipolar, van der Waals, and benzene-ring steric interactions is studied by Monte Carlo. Reentrant phase diagrams are obtained, with the sequence nematic-smectic Ad-nematic-smectic A1-smectic C. The reentrance mechanism is in terms of interpenetrating order and disorder. Layer tilting is found to be due to permeation-rotation lock-in. The smectic A1 and C phases occur in two versions, one pointing to in-plane domain formation. The phase diagrams are obtained by adapting the Lindemann melting criterion. Layer thicknesses, tilts, specific heats, and dimer concentrations are evaluated. The model explains three types of smectic C phases distinguished by tilt saturation. Results qualitatively agree with experiments.


Dipolar Interaction Monte Carlo Sampling Local Curvature Microscopic Theory Calculate Phase Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Cladis, Phys. Rev. Lett. 35: 48 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    K.G. Wilson, Phys. Rev. B 4: 3174, (1971).ADSMATHCrossRefGoogle Scholar
  3. 2a.
    K.G. Wilson, Phys. Rev. B 4: 3184 (1971).ADSMATHCrossRefGoogle Scholar
  4. 3.
    G.R. Andersen and J.C. Wheeler, J. Chem. Phys. 69: 2082 (1978).ADSCrossRefGoogle Scholar
  5. 4.
    S.R. McKay, A.N. Berker and S. Kirkpatrick, Phys. Rev. Lett. 48: 767 (1982).MathSciNetADSCrossRefGoogle Scholar
  6. 5.
    R.G. Caflisch, A.N. Berker and M. Kardar, Phys. Rev. B 31: 4527 (1985).ADSCrossRefGoogle Scholar
  7. 6.
    W. Hoston and A.N. Berker, Phys. Rev. Lett. 67: 1027 (1991).ADSCrossRefGoogle Scholar
  8. 7.
    A.N. Berker and J.S. Walker, Phys. Rev. Lett. 47: 1469 (1981).ADSCrossRefGoogle Scholar
  9. 8.
    J.O. Indekeu and A.N. Berker, Phys. Rev. A 33: 1158 (1986).ADSCrossRefGoogle Scholar
  10. 9.
    J.O. Indekeu, A.N. Berker, C. Chiang, and C.W. Garland, Phys. Rev. A 35: 1371 (1987).ADSCrossRefGoogle Scholar
  11. 10.
    J.O. Indekeu and A.N. Berker, J. Phys. (Paris) 49: 353 (1988).CrossRefGoogle Scholar
  12. 11.
    R.R. Netz and A.N. Berker, Phys. Rev. Lett. 68: 333 (1992).ADSCrossRefGoogle Scholar
  13. 12.
    A. de Vries, in: “Liquid Crystals, the Fourth State of Matter,” by F. D. Seva, ed., Marcel Dekker, New York, (1979), p. 1.Google Scholar
  14. 13.
    J. Prost, Adv. Phys. 33: 1 (1984).ADSCrossRefGoogle Scholar
  15. 14.
    P. Barois, Chapter 4 of this Volume (1991).Google Scholar
  16. 15.
    A.N. Berker, K. Hui, and J. Marko, to be published.Google Scholar
  17. 16.
    F. Hardouin, A.M. Levelut, M.F. Achard, and G. Sigaud, J. Chim. Phys. 80: 53 (1983).Google Scholar
  18. 17.
    J.O. Indekeu, Phys. Rev. A 37: 288 (1988).ADSCrossRefGoogle Scholar
  19. 18.
    A.R. Kortan, H. von Känel, R.J. Birgeneau, and J.D. Litster, J. Phys. (Paris) 45: 537 (1984).Google Scholar
  20. 19.
    G.H. Wannier, Phys. Rev. 79: 357 (1950).MathSciNetADSMATHCrossRefGoogle Scholar
  21. 20.
    C.K. Bagdassarian, D. Roux, A. Ben-Shaul, and W.M. Gelbart, J. Chem. Phys. 94: 3030 (1991).ADSCrossRefGoogle Scholar
  22. 21.
    N.H. Tinh, Mol. Cryst. Liq. Cryst. 127: 143 (1985).CrossRefGoogle Scholar
  23. 22.
    F. Hardouin and A.M. Levelut, J. Phys. (Paris) 41: 41 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • R. R. Netz
    • 1
  • A. N. Berker
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations