Advertisement

X-Ray Studies of Lyotropic Liquid Crystals

  • R. Shashidhar
Part of the NATO ASI Series book series (NSSB, volume 290)

Abstract

There are two broad classes of liquid crystalline systems, the thermotropic and the lyotropic. The historical difference between these two is that the lyotropic systems are always mixtures (or solutions) of unlike molecules in which one is a nonmesogenic liquid. Solutions of soap and water are typical examples of lyotropics. Their mesomorphic phases appear as a function of either concentration or temperature. In contrast, the thermotropic systems are usually formed from a single chemical component, and the mesomorphic phases appear primarily as a result of temperature changes. The molecular distinction between the two is that one of the molecules in the lyotropic solution always has a polar hydrophilic part, often called the “head group”, and one or more hydrophobic alkyl chains called “tails”. Although these molecules can form mesogenic phases as single component systems, they more easily do so in solution with either water or oil. This is due to a competition between the hydrophilic and hydrophobic interactions, as well as other things such as packing and steric constraints1,2. The molecules that form thermotropic liquid crystalline phases also have hydrophilic and hydrophobic parts, the disparity in the affinity of these parts for either water or oil is much less and most of these molecules are relatively insoluble in water. Nevertheless, it is interesting that different parts of typical thermotropic molecules do have some of the same features as the lyotropic molecules. For example, although the rod-like thermotropic molecules always have an acyl chain at one or both ends of a more rigid section, the chain lengths are rarely as long as those of the lyotropic molecules. Also, the solubility of different parts of the thermotropic molecules, when separated, are not as disparate as those of the lyotropic molecules, are definitely different.

Keywords

Liquid Crystal Liquid Crystalline Phase Lyotropic Liquid Crystal Bilayer Plane Single Component System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.S. Pershan, “Structure of Liquid Crystal Masses”, World Scientific, Singapore (1988).CrossRefGoogle Scholar
  2. 2.
    S.A. Safran and N.A. Clark, Editors, “Physics of Complex and Supramolecular Fluids”, Wiley, New York (1987).Google Scholar
  3. 3.
    J.N. Israelachvili, “Intermolecular and Surface Forces”, Academic, Orlando (1985).Google Scholar
  4. 4.
    J. Meunier, D. Langevin and N. Boccara, Editors, “Physics of Amphiphilic Layers”, Springer Verlag, Berlin, Heidelberg, New York (1987).Google Scholar
  5. 5.
    V.A. Parsegian, N. Fuller and R.P. Rand, Proc. Nad. Acad. Sci., 76: 2750 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    A.C. Cowley, N.L. Fuller, R.P. Rand and V.A. Parsegian, Biochem. 17: 3163 (1978).CrossRefGoogle Scholar
  7. 7.
    J.N. Israelachvili, “Intermolecular and Surface Forces”, Academic, Orlando (1985);Google Scholar
  8. 7a.
    J. Mahanty and B.W. Ninham, “Dispersion Forces”, London (1971).Google Scholar
  9. 8.
    C.R. Safinya, D. Roux, B.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark and A.M. Bellocq, Phys. Rev. Lett. 57: 2718 (1986);ADSCrossRefGoogle Scholar
  10. 8a.
    D. Roux and C.R. Safinya, J. Phys. (Paris) 49: 307 (1988);CrossRefGoogle Scholar
  11. 8b.
    F. Nallet, D. Roux and J. Prost, Phys. Rev. Lett 62: 276 (1989).ADSCrossRefGoogle Scholar
  12. 9.
    R. Lipowsky and S. Leibler, Phys. Rev. Lett. 56: 2541 (1986);ADSCrossRefGoogle Scholar
  13. 9a.
    R.E. Goldstein and. Leibler, Phys. Rev. Lett. 61: 2213 (1988).ADSCrossRefGoogle Scholar
  14. 10.
    Y. Kantor, M. Kardar and D.R. Nelson, Phys. Rev. Lett. 57:791 (1986);ADSCrossRefGoogle Scholar
  15. 10a.
    D.R. Nelson and L. Peliti, J. Phys. (Paris) 48: 1085 (1987);CrossRefGoogle Scholar
  16. 10b.
    J.A. Aronovitz and T.C. Lubensky, Phys. Rev. Lett. 60: 2634 (1988);ADSCrossRefGoogle Scholar
  17. 10c.
    For a broad discussion see “Statistical Mechanics of Membranes and Surfaces”, Ed. D. Nelson, T. Piran and S. Weinberg, World Scientific (1988).Google Scholar
  18. 11.
    U.V. Luzzati, Biol. Membr. 1: 71 (1968);Google Scholar
  19. 11a.
    A. Tardieu, V. Luzati and F.C. Reman, J. Mol. Biol. 75: 711 (1973).CrossRefGoogle Scholar
  20. 12.
    M.J. Janiak, D.M. Small and G.G. Shipley, J. Biol. Chem. 254: 6068 (1979).Google Scholar
  21. 13.
    G.L. Kirk, S.M. Gruner and D.L. Stein, Biochemistry 23: 1093 (1984);CrossRefGoogle Scholar
  22. 13a.
    G.L. Kirk and S.M. Gruner, J. de Physique 46 (1985);Google Scholar
  23. 13b.
    M.B. Schneider and W.W. Webb, J. Phys. (Paris) 45: 273 (1984).Google Scholar
  24. 14.
    S. Doniach, J. Chem. Phys. 70: 10 (1979);CrossRefGoogle Scholar
  25. 14a.
    W.K. Chan and W.W. Webb, Phys. Rev. Lett 46: 39 (1981).ADSCrossRefGoogle Scholar
  26. 15.
    C.R. Safinya, D. Rons, B.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark and A.M. Bellocq, Phys. Rev. Lett. 57: 2718 (1986).ADSCrossRefGoogle Scholar
  27. 16.
    G.S. Smith, E.B. Sirota, C.R. Safinya, R.J. Plano and N.A. Clark, J. Chem. Phys.(in press).Google Scholar
  28. 17.
    W. Helfrich, Z. Naturforsch, 33a: 305 (1978).Google Scholar
  29. 18.
    S.G. J. Mochrie, A.R. Kortan, R J. Birgeneau and P.M. Horn, Z. Phys. B 62:79 (1985).ADSCrossRefGoogle Scholar
  30. 19.
    P.G. de Gennes. “The Physics of Liquid Crystals” (Clarendon, Oxford, 1974).Google Scholar
  31. 20.
    L.D. Landau, p. 209; in “Collected Papers of L.S. Landau” edited by D. ter Haar (Gordon and Breach, New York, 1965) R.E. Peierls, Helv. Phys. Acta, 7, Suppl. 81 (1934).Google Scholar
  32. 21.
    M.B. Schneider, J.T. Jenkins and W.W. Webb, J. Phys. (Paris) 45, 1457 (1984).CrossRefGoogle Scholar
  33. 22.
    D. Roux and A.M. Bellocq, “Physics of Amphiphiles”, edited by V. DeGiorgio and M. Corti (NorthHolland, Amsterdam, 1985).Google Scholar
  34. 23.
    J.M. di Meglio, M. Dvolaitsky and C. Taupin, J. Phys. Chem. 89: 871 (1985).CrossRefGoogle Scholar
  35. 24.
    A. Caille, C.R. Acad. Sci. Ser. B 274: 891 (1972).Google Scholar
  36. 25.
    J. Ais-Nielsen, J.D. Litster, R.J. Birgeneau, M. Kaplan, C.R. Safinya, A. Lindegaard-Andersen and S. Mathiesen, Phys. Rev. B 22: 312 (1980).ADSCrossRefGoogle Scholar
  37. 26.
    C.R. Safinya, D. Roux, G.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark and A.M. Bellocq, Phys. Rev. Lett. 57: 2718 (1986).ADSCrossRefGoogle Scholar
  38. 27.
    G.S. Smith, C.R. Safinya, D. Roux and N.A. Clark, Mol. Cryst. Liq. Cryst. 144: 235 (1987);Google Scholar
  39. 27a.
    G.S. Smith, E.B. Sirota, C.R. Safinya and N.A. Clark, Phys. Rev. Lett. 60: 813 (1988);ADSCrossRefGoogle Scholar
  40. 27b.
    E.B. Sirota, G.S. Smith, C.R. Safinya, R J. Piano and N.A. Clark, Science 242:1406 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • R. Shashidhar
    • 1
    • 2
  1. 1.Center for Bio/Molecular Science & EngineeringNaval Research LaboratoryUSA
  2. 2.Geo-Centers, Inc.Fort WashingtonUSA

Personalised recommendations