Introduction and General Theory of Lyotropic Liquid Crystals

Part of the NATO ASI Series book series (NSSB, volume 290)


Amphilic molecules incorporate two antagonistic chemical functions. One part of the molecule is very soluble in water (hydrophilic) and another part is very soluble in an organic solvent (hydrophobic). Due to these opposite effects the molecules in solution aggregate spontaneously into objects of very different size and shape, among which one principally observes spheres, cylinders and twodimensional objects (membranes). Many of the phases observed in a typical phase diagram are liquid crystals. For example, the lamellar phase, which consists of a stack of membranes with a long range order in the direction perpendicular to the plane, is a smectic A phase. At first these phases appeared relatively uninteresting, but now they have been extensively studied and they exhibit extremely interesting and peculiar behavior. In certain cases, close to a transition toward nematic or hexagonal phases, the lamellar phase cannot be described as a stack of flat membranes but exhibits many defects that can be observed experimentally.In principle, the lyotropic nature of the phase allows the repeating distance d between the membranes to vary. In many systems this variation remains small (typically ranging from 30 to 60 Å), however in certain cases it is possible to prepare lamellar phases with extremely large repeating distances (up to several 1000 Å). These systems are especially interesting because, as we will see, they permit us to study the interactions between membranes over a wide range of conditions. They are also a unique example of a colloidal smectic A phase.


Elastic Constant Thermal Fluctuation Lamellar Phasis Small Angle Scattering Concentration Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Helfrich, Z. Naturforsh. 28a: 693 (1973).Google Scholar
  2. 2.
    D. R. Nelson, in “Statistical mechanics of membranes and surfaces”, eds. D.R. Nelson, T. Piran and S. Weinberg (World Scientific, Singapore, 1989).Google Scholar
  3. 3.
    W. Helfrich, J. Phys. France, 46: 1263 (1985).CrossRefGoogle Scholar
  4. 4.
    L. Peliti and S. Leibler, Phys. Rev. Lett. 54: 1690 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    F. David, in “Statistical mechanics of membranes and surfaces” eds. D.R. Nelson, T. Piran and S. Weinberg (World Scientific, Singapore, 1989).Google Scholar
  6. 6.
    P.G. de Gennes and C. Taupin, J. Phvs. Chem. 86: 2294 (1982).CrossRefGoogle Scholar
  7. 7.
    D. Roux and M. E. Cates, in “Proceedings of the 4th Nishinomayia Yukawa Symposium” Springer Verlag, to be published.Google Scholar
  8. 8a.
    W.J. Benton and C.A. Miller, J. Phvs. Chem., 87: 4981 (1983)Google Scholar
  9. 8b.
    M. Dvolaitzky, R. Ober, J. Billard, C. Taupin, J. Charvolin and Y. Hendrix, C. R. Acad. Sci. 45: 295 (1981)Google Scholar
  10. 8c.
    D. Roux and A. M. Bellocq, in “Physics of Amphiphiles”, ed. V. Degiorgio and M. Corti, North Holland Amsterdam, (1985)Google Scholar
  11. 8d.
    A. M. Bellocq and D. Roux in “Microemulsions Structure and Dynamics” eds. S. Friberg and P. Bothorel (CRC Press, Boca Baton, 1987) p. 33Google Scholar
  12. 8e.
    J.M. Dimeglio, M. Dvolaitsky and C. Taupin, J. Phys. Chem. 89: 871 (1985).CrossRefGoogle Scholar
  13. 9a.
    F. Larche, J. Appell, G. Porte, P. Bassereau and J. Marignan, Phys. Rev. Lett., 56: 1700 (1985).ADSCrossRefGoogle Scholar
  14. 10.
    W. Helfrich, Z. Naturforsh, 33a: 305 (1978).ADSGoogle Scholar
  15. H.A. Parsegian, N. Fuller and R.P. Rand, Proc. Natl. Acad. Sci. 76: 2750 (1979).ADSCrossRefGoogle Scholar
  16. 12.
    D. Roux and C. Safinya, J. Physique, 49: 307 (1988).CrossRefGoogle Scholar
  17. 13.
    J.N. Israelachvili, in “Intermolecular and surface forces”, Academic Press, Orlando, (1985).Google Scholar
  18. 14.
    W. Helfrich and R.M. Servuss, Il Nuovo Cimento 3: 137 (1984).Google Scholar
  19. 15.
    R. Strey, R. Schomaecker, D. Roux, F. Nallet and U. Olsson J. Chem Soc. Faraday Trans., 86: 2253 (1990).CrossRefGoogle Scholar
  20. 16a.
    P. Ekwall, L. Mandell and K. Fontell, J. Colloid Interface Sci., 33: 215 (1970)CrossRefGoogle Scholar
  21. 16b.
    K. Fonteil, J. Colloid Interface Sci., 44: 318 (1973).CrossRefGoogle Scholar
  22. 17.
    J. Prost in “Advances in Physics”, 33: 146 (1984).CrossRefGoogle Scholar
  23. 18.
    P.G. de Gennes in “The Physics of Liquid Crystals”, (Clarendon Oxford 1974).Google Scholar
  24. 19.
    F. Brochard and P. G. de Gennes, Pramana. suppl., 1: 1 (1975).Google Scholar
  25. 20a.
    F. Nallet, D. Roux and S.T. Milner, J. Physique France, 51: 2333 (1990)CrossRefGoogle Scholar
  26. 20b.
    G. Porte, J. Marigna, P. Bassereau and R. May, Europh. Lett., 7: 718 (1988).ADSCrossRefGoogle Scholar
  27. 21a.
    F. Nallet, D. Roux and J. Prost, Phys. Rev. Lett., 62: 276(1989)ADSCrossRefGoogle Scholar
  28. 21b.
    F. Nallet, D. Roux and J. Prost, Progr. Colloid Polvm. Sci. 79: 313 (1989)CrossRefGoogle Scholar
  29. 21c.
    F. Nallet, D. Roux and J. Prost, J. Phys. France, 50: 3147 (1989).CrossRefGoogle Scholar
  30. 22.
    T. C. Lubensky, J. Prost and S. Ramaswamy, J. Physique France, 51: 93 (1990).Google Scholar
  31. 23a.
    Y. Kantor and M. Kardar Europh. Lett., 9: 53 (1989)ADSCrossRefGoogle Scholar
  32. 23b62.
    J. Toner, Phys. Rev. Lett., 62: 905 (1989)Google Scholar
  33. 23c.
    F. Pincus, J. F. Joanny and D. Andelman, Europhysics Lett., 11: 76 (1990).CrossRefGoogle Scholar
  34. 24a.
    R. E. Peierls, Annls. Inst. Henri Poincare 5 177 (1935)MathSciNetMATHGoogle Scholar
  35. 24a.
    R. E. Peierls Helv. Phys. Acta 7, Suppl. 81 (1934).Google Scholar
  36. 25.
    L.D. Landau, Phys. Z. Sowj Un., 2: 26 (1937) or collected papers of L.D. Landau edited by D. Ter Haar (Gordon and Breach, NY 1965), p. 209.Google Scholar
  37. 26a.
    A. Caille, C. R. Hebd. Acad. Scien. Ser. B, 274: 891 (1972)Google Scholar
  38. 26b.
    L. Gunther, Y. Imry and J. Lajzerowics Phys. Rev. A, 22: 1733 (1980).ADSCrossRefGoogle Scholar
  39. 27.
    J. Als-Nielsen, J.D. Litster, R.J. Birgeneau, M. Kaplan, C.R. Safinya, A. Lindegaard-Andersen and S. Mathiesen, Phys. Rev. B, 22: 312 (1980).ADSCrossRefGoogle Scholar
  40. 28.
    J. Als-Nielsen in “Symmetries and broken Symmetries”, edited by N. Bocana (Paris IDSET), p. 107.Google Scholar
  41. 29a.
    C. R. Safinya, D. Roux, G.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark and A.M. Bellocq, Phys. Rev. Lett., 57: 2718 (1986)ADSCrossRefGoogle Scholar
  42. 29b.
    P. Bassereau, J. Marignan, G. Porte, J. Physique, 48: 673 (1987).CrossRefGoogle Scholar
  43. 30.
    C.R. Safinya, E. Sirota, D. Roux and G.S. Smith, Phys. Rev. Lett. 62:1134 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • D. Roux
    • 1
  1. 1.Centre de Recherche Paul PascalPessacFrance

Personalised recommendations