Molecularly Non-Homogeneous Nematic Polymers

  • X. J. Wang
  • M. Warner
Part of the NATO ASI Series book series (NSSB, volume 290)


Most main chain liquid crystalline polymers are synthesized with the mesogenic groups (rods) linked by flexible spacers, such as repeated methylene groups. The theories presented so far deal either with rigid rods system (Flory1 and Onsager2), or model semiflexible polymer liquid crystals by either the freely-jointed rod chain, or by the worm-like chain36. The rigid rod model does not allow any flexibility of polymer chain. However when the chain is not completely rigid, chain flexibility in fact has significant effect on the properties of polymers. The freely-jointed rod chain treats the polymer as repeated rods, but it fails to deduce the transition to rod behaviour expected when nematic field is strong. On the other hand, the worm-like chain theory has been successful and gives better agreement with experiments. More recently Yurasova and Semenov7 presented a model which attacks the non-homogeneous chain mentioned above. But they relax the concept that chain tangent vector is a unit vector, so that the problem can be analysed in terms of the standard Wiener integral which is solvable mathematically. It is well known that the relaxation of this constraint can fail to give correct results even when dealing with the simple case, e.g. the long isotropic chain8.


Nematic Phase Persistence Length Liquid Crystalline Polymer Liquid Crystal Polymer Mesogenic Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Flory, Proc.R.Soc.London, Ser. A234:73(1956).ADSCrossRefGoogle Scholar
  2. 2.
    L. Onsager, Ann. N. Y. Acad. Sci., 51: 627 (1949).ADSCrossRefGoogle Scholar
  3. 3.
    A. ten Bosch, P. Maissa and P. Sixou, Phys. Letts., 94A: 298 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    M. Warner, J. M. F. Gunn and A. Baumgärter, J. Phys., A18: 3007 (1985).ADSGoogle Scholar
  5. 5.
    V. V. Rusakov and M. I. Shliomis, J. Phys. Letts. (Paris), 46: L1065 (1985).CrossRefGoogle Scholar
  6. 6.
    X. J. Wang and M. Warner, J. Phys., A19: 2215 (1986).ADSGoogle Scholar
  7. 7.
    T. A. Yurasova and A. N. Semenov, to appear in Mol. Cryst. Liq. Cryst.Google Scholar
  8. 8.
    K. Freed, in: “Advances in Chemical Physics”, Vol. XXII, I. Prigogine and S. A. Rice, ed., Wiley-Interscience, N.Y. (1972).Google Scholar
  9. 9.
    W. Maier and A. Saupe, Teil I., Z. Naturf., 14a: 882 (1959).ADSGoogle Scholar
  10. 9a.
    A. Roviello and A. Sirigu, Makromol. Chem., 183: 895 (1982).CrossRefGoogle Scholar
  11. 10.
    S. Antoun, R. W. Lenz and J. -I. Jin, J. Polym. Sci., Polym. Chem. Ed., 19: 1901 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    D. van Luyen and L. Strzelecki, Euro. Polym. J., 16: 303 (1980).CrossRefGoogle Scholar
  13. 13.
    C. K. Ober, J-I. Jin and R. W. Lenz, in: “Liquid Crystal Polymer I”, M. Gordon and N. A. Plate, ed., Springer-Verlag, Berlin (1984).Google Scholar
  14. 14.
    V. Frosini, S. de Petris, G. Galli and E. Chiellini, in: “Recent Advances in Liquid Crystalline Polymers”, L. Lawrence Chapoy, ed., Elsevier, London (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • X. J. Wang
    • 1
  • M. Warner
    • 1
  1. 1.Cavendish LaboratoryCambridgeUK

Personalised recommendations