Phase Transitions and Phase Diagrams in Liquid Crystalline Polymers

  • G. Sigaud
Part of the NATO ASI Series book series (NSSB, volume 290)


It is trivial to recall that the simplest and commonest model to represent a LMM is the anonymous uncharacteristic rigid rod shown in Fig. 1. Indeed liquid crystalline properties are readily associated to molecular or supramolecular anisotropy and therefore the first modelization of a macromolecular mesogen do not differ from this simple picture: Fig. 1 can serve as well provided one considers possible an infinite lengthening of this object. However this seemingly simple modification has non negligible outcomes, both theoretical and practical. First, the steric interactions in assemblies of such very long rods become a major parameter in the occurence of an anisotropic state. The great achievement of early theoretical works by Onsager and Flory is to have introduced the axial ratio x = L/d (Fig. 1) to account for these repulsive forces. Refined models including now attractive interactions1 show that the isotropic-nematic transition is expected only within a given range of axial ratio limited by an upper critical value (≈6) (Fig. 2). In addition the order parameter at the transition for long rods comes out to be close to 1, significantly higher than the value from the Maier and Saupe’s theory (≈0.43) which describes satisfactorily the behavior of short LMMs. What system seems more suitable than a sequence of phenyl rings to make up rigid-rod polymers ? In order to test this model and evaluate the meaning and the limitations of the phase diagram in Fig. 2, let us consider the Table 1 which presents some relevant characteristics of polyphenylenes: H - {- ø) -}n - H.


Liquid Crystal Phase Behavior Axial Ratio Nematic Phase Liquid Crystalline Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Flory and G. Ronca, Mol. Cryst. Iiq. Cryst. 54:311 (1979).CrossRefGoogle Scholar
  2. 2.
    P.A. Irvine, Da Cheng Wu and P.J. Flory, J. Chem. Soc. Faraday Trans I 80:1795 (1984).CrossRefGoogle Scholar
  3. 3.
    A. Roviello and A. Sirigu, J. Polym. Sci.. Polvm. Lett. Ed. 13:455 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    H. Finkelmann, H. Ringsdorf and J.H. Wendorff, Makromol. Chem. 179:273 (1978).CrossRefGoogle Scholar
  5. 5.
    A.N. Semenov and A.R. Khokhlkov, Sov. Phys. Usp. 31:988 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    S.V. Vasilenko, A.R. Khokhlov and V.P. Shibaev, Polymer Sci. USSR, 26, (1984).Google Scholar
  7. 7a.
    X.J. Wang and M. Warner, J. Phys. A 20:713 (1987)ADSCrossRefGoogle Scholar
  8. 7a.
    W. Renz and M. Warner, Proc. of the Royal Soc. of London, series A 417:213 (1988).CrossRefGoogle Scholar
  9. 8.
    F. Auriemma, P. Corradini and M. Vacatello, J. Chem. Phys. 93:8314 (1990).ADSCrossRefGoogle Scholar
  10. 9.
    F. Dowell, Mol. Cryst. Liq. Cryst. 157:203 (1988).Google Scholar
  11. 10.
    W. Renz, Mol. Cryst. Liq. cryst. 155:549 (1988).Google Scholar
  12. 11.
    A. Blumstein, S. Vilasagar, S. Ponrathnam, S.B. Clough, R.B. Blumstein and G. Maret, J. of Polym. Sci. 20:877 (1982).Google Scholar
  13. 12.
    P. Shibaev and N.A. Plate, Pure & Appl. Chem. 57:1589 (1985).CrossRefGoogle Scholar
  14. 13.
    V. Percec and B. Hahn, Macromolecules 22:1588 (1989).ADSCrossRefGoogle Scholar
  15. 14.
    H. Stevens, G. Rehage and H. Finkelmann, Macromolecules 17:851 (1984).ADSCrossRefGoogle Scholar
  16. 15.
    R.S. Kumar, S.B. Clough and A. Blumstein, Mol. Cryst. Liq. Cryst. 157:387 (1988).Google Scholar
  17. 16.
    V. Percec and M. Lee, Polymer Bulletin 25:123 (1991).Google Scholar
  18. 17.
    V. Percec, M. Lee and H. Jonsson, J. of Polymer Sci. 29:327 (1991).Google Scholar
  19. 18.
    V. Percec and M. Lee, Macromolecules 24:1017 (1991).ADSCrossRefGoogle Scholar
  20. 19.
    R.B. Blumstein and A. Blumstein, Mol. Cryst. Liq. Cryst. 165:361(1988).Google Scholar
  21. 20.
    J.F. D’Allest, P.P. Wu, A. Blumstein and R.B. Blumstein, Mol. Cryst. Liq. Crst. Letters 3:103 (1986).Google Scholar
  22. 21.
    J.S. Moore and S.I. Stupp, Macromolecules 21:1217–1234 (1988).ADSCrossRefGoogle Scholar
  23. 22.
    A. Blumstein, Polymer J. 17:277 (1985).CrossRefGoogle Scholar
  24. 23.
    W. Volksen, D.Y. Yoon and P. Cotts, Macromolecules 22:3846 (1989).ADSCrossRefGoogle Scholar
  25. 24.
    V. P. Shibaev and N.A. Plate, Pure & Appl. Chem. 57:1589 (1985).CrossRefGoogle Scholar
  26. 25.
    P. Keller, Mol. Cryst. Liq. Cryst. 157:193 (1988).Google Scholar
  27. 26.
    P. Keller, Mol. Cryst. Liq. Cryst. 155:37 (1988).Google Scholar
  28. 27.
    V. Percec, D. Tomazos and R.A. Willingharn, Polymer Bulletin 22:199 (1989).CrossRefGoogle Scholar
  29. 28.
    R. Zentel and G. Reckert, Makromol. Chem. 187:1915 (1986).CrossRefGoogle Scholar
  30. 29.
    G. Mitchell, F. Davis and A. Ashman, Polymer 28:637 (1987).CrossRefGoogle Scholar
  31. 30.
    C. Degert, M. Mauzac, H. Richard and G. Sigaud, 13th ILLC, Vancouver (Canada), July 22–27 (1990).Google Scholar
  32. 31.
    E. Gramsbergen, L. Longa and W. de Jeu, Phys. Rep. 135:195 (1986).ADSCrossRefGoogle Scholar
  33. 32.
    P.G. de Gennes, C.R. Acad. Sci. Paris 281B: 101(1975).Google Scholar
  34. 33.
    K.P. Gelling and M. Warner, Mol. Cryst. Liq. Cryst. 155:539 (1988).Google Scholar
  35. 34.
    J. Schatzle, W. Kaufhold and H. Finkelmann, Makromol. chem. 190:3269 (1989).CrossRefGoogle Scholar
  36. 35.
    H. Ringsdorf, B. Schlarb and J. Venzmer, Angew. Chem. Int. Ed. Engl. 27:113 (1988).CrossRefGoogle Scholar
  37. 36.
    W. Brostow, Polymer, 31:979 (1990).CrossRefGoogle Scholar
  38. 37.
    W. Kreuder and H. Ringsdorf, Makromol. Chem. Rapid Commun. 4:807 (1983).CrossRefGoogle Scholar
  39. 38.
    W. Kreuder, H. Ringsdorf and P. Tschirner, Makromol. Chem. Rapid Commun. 6:987 (1985).CrossRefGoogle Scholar
  40. 39.
    P. Weber, D. Guillon, A. Skoulios and R.D. Miller, J. Phys. France 50:793 (1989).CrossRefGoogle Scholar
  41. 40.
    P. Weber, D. Guillon, A. Skoulios and R.D. Miller, Liquid Crystals 8:825 (1990).CrossRefGoogle Scholar
  42. 41.
    G. Ungar, J.L. Feijoo, V. Percec and R. Yourd, Macromolecules, in press.Google Scholar
  43. 42.
    M. Ballauff and G.F. Schmidt, Mol. Cryst. Liq. cryst. 147:163 (1987).CrossRefGoogle Scholar
  44. 43.
    M. Ebert, O. Herrmann-Schonherr, J.H. Wendorff, H. Ringsdorf and P. Tschirner, Liquid Crystals 7:63 (1990).CrossRefGoogle Scholar
  45. 44.
    F. Hessel, RP. Herr and H. Finkelmann, Makromol. Chem. 188:1597 (1987).CrossRefGoogle Scholar
  46. 45.
    F. Hardouin, G. Sigaud, P. Keller, H. Richard, H.T. Nguyen, M. Mauzac and M.F. Achard, Liquid Crystals 5:463 (1989) and references therein.CrossRefGoogle Scholar
  47. 46.
    T.I. Gubina, S.G. Kostromin, R.V. Talroze, V.P. Shibaev and N.A. Plate, Vysokol. Soedin. B28:394 (1986).Google Scholar
  48. 47.
    N. Lacoudre, A. Le Borgne, N. Spassky, J.P. Vairon, P. Le Barny, J.C. Dubois, S. Esselin, C. Friedrich and C. Noel, Mol. Cryst. Liq.Cryst. 155:113 (1988).Google Scholar
  49. 48.
    V. Percec, private communication.Google Scholar
  50. 49.
    R. Duran, D. Guillon and A. Skoulios, Makromol. Chem. Rapid Commun. 8:321 (1987).CrossRefGoogle Scholar
  51. 50.
    B.W. Endres, M. Ebert, J.H. Wendorff, B. Reck and H. Ringsdorf, Liquid Crystals 7:217 (1990).CrossRefGoogle Scholar
  52. 51.
    D. Demus, Liquid Crystals 5:75 (1989).CrossRefGoogle Scholar
  53. 52.
    A. Blumstein and O. Thomas, Macromolecules 15:1264 (1982).ADSCrossRefGoogle Scholar
  54. 53.
    D. Demus and H. Zachse, in:“Fluessige Kristalle in Tabellen”, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig.Google Scholar
  55. 54.
    A.C. Griffin and S.J. Havens, J.of Polymer Science. Pol. Phys. Ed. 19:951(1981).ADSCrossRefGoogle Scholar
  56. 55a.
    R.W. Lenz, J. of Polymer Sci.. Polymer Symp. 72:1 (1985)CrossRefGoogle Scholar
  57. 55b.
    R.W. Lenz, Pure & Appl. Chem. 57:1537 (1985).CrossRefGoogle Scholar
  58. 56.
    G. Sigaud, D.Y. Yoon and A.C. Griffin, Macromolecules 16:875 (1983).ADSCrossRefGoogle Scholar
  59. 57.
    P. Esnault, D. Galland, F. Volino and R.B. Blumstein, Macromolecules 22:2734 (1989).CrossRefGoogle Scholar
  60. 58.
    H. Furuya, T. Dries, K. Fuhrmann, A. Abe, M. Ballauff and E. Fischer, Macromolecules 23:4122 (1990).ADSCrossRefGoogle Scholar
  61. 59.
    K. Kohlammer, K. Muller and G. Kothe, Liquid Crystals 5:1525 (1989) and references therein.CrossRefGoogle Scholar
  62. 60.
    D.Y. Yoon and S. Bruckner, Macromolecules 18:651 (1985).ADSCrossRefGoogle Scholar
  63. 61.
    J.F. D’Allest, P. Maissa, A. ten Bosch, P. Sixou, A. Blumstein, R.B. Blumstein, J. Teixera and L. Noirez, Phys. Rev. Lett. 61:2562 (1988).ADSCrossRefGoogle Scholar
  64. 62.
    P. Keller, F. Hardouin, M. Mauzac and M.F. Achard, Mol. Cryst. Liq. Cryst. 155:171 (1988).Google Scholar
  65. 63a.
    F. Hardouin, S. Mery, M.F. Achard, M. Mauzac, P. Davidson and P. Keller, Liquid Crystals 8:565 (1990)CrossRefGoogle Scholar
  66. 63b.
    S. Mery, PhD thesis, Universite de Bordeaux I, # 510, (1990).Google Scholar
  67. 64.
    F. Moussa, J.P. Cotton, F. Hardouin, P. Keller, M. Lambert, G. Pepy, M. Mauzac and H. Richard, J. Phys. France 48:1079 (1987).CrossRefGoogle Scholar
  68. 65.
    F. Hardouin, L. Noirez, P. Keller, M. Lambert, F. Moussa and G. Pepy, Mol. cryst. Liq. Cryst. 155:389 (1988).Google Scholar
  69. 66.
    L. Noirez, P. Keller, P. Davidson, F. Hardouin and J.P. Cotton, J. Phys. France 49:1993 (1988).CrossRefGoogle Scholar
  70. 67.
    M. Mauzac, H. Richard and L. Latie, Macromolecules 23:753 (1990).ADSCrossRefGoogle Scholar
  71. 68.
    H. Oulyadi, F. Laupretre, L. Monnerie, M. Mauzac, H. Richard and H. Gasparoux, Macromolecules 23:1965 (1990).ADSCrossRefGoogle Scholar
  72. 69.
    M.F. Achard, M. Mauzac, H. Richard, G. Sigaud and F. Hardouin, Eur. Polym. J. 25:593 (1989).CrossRefGoogle Scholar
  73. 70.
    see e.g. V. Percec and Y. Tsuda, Polymer Bulletin 23:225 (1990).CrossRefGoogle Scholar
  74. 71.
    G.W. Gray, J.S. Hill and D. Lacey, Angew. Chem. Int. Ed. Engl. Adv. Mater. 28:1120 (1989).CrossRefGoogle Scholar
  75. 72.
    S. Diele, S. Oelsner, F. Kuschel, B. Hisgen, H. Ringsdorf and R. Zentel, Makromol. Chem. 188:1993 (1987).CrossRefGoogle Scholar
  76. 73.
    M.F. Achard, H.T. Nguyen, H. Richard, M. Mauzac and F. Hardouin, Liquid Crystals 8:533 (1990).CrossRefGoogle Scholar
  77. 74.
    S. Diele, S. Oelsner, F. Hisgen and H. Ringsdorf, Mol. Cryst. Liq. Cryst. 155:399 (1988).Google Scholar
  78. 75.
    H.T. Nguyen, M.F. Achard, F. Hardouin, M. Mauzac, H. Richard and G. Sigaud, Liquid Crystals 7:385 (1990).CrossRefGoogle Scholar
  79. 76.
    M.F. Achard, H.T. Nguyen, M. Mauzac, F. Hardouin, G. Sigaud and H. Richard, 13th ILLC, Vancouver (Canada), July 2227 (1990).Google Scholar
  80. 77.
    T. Hashimoto, M. Shibayama, M. Fujimura and H. Kawai, in: “Block Copolymers”, Dale J. Meier, Ed., Harwood Academic Publishers, pp. 63–107 (1979).Google Scholar
  81. 78.
    see e.g. “Polymer Solutions”, Cassassa E.F., Berry C.G., in: “Comprehensive Polymer Science”, vol. 2, pp 71–120, Allen Bevington, ed., Pergamon (1989).CrossRefGoogle Scholar
  82. 79.
    M. Warner and P.J. Flory, J. of Chemical Phys. 73:6327 (1980).ADSCrossRefGoogle Scholar
  83. 80.
    C. Viney, D.Y. Yoon, B. Reck and H. Ringsdorf, Macromolecules 22:4088 (1989).ADSCrossRefGoogle Scholar
  84. 81.
    C. Weill, C. Casagrande, M. Veyssie and H. Finkelmann, J. Phys. France 47:887 (1982).CrossRefGoogle Scholar
  85. 82.
    H. Benthack-Thoms and H. Finkelmann, Makromol. Chem. 186:1895 (1985).CrossRefGoogle Scholar
  86. 83.
    C. Casagrande, M.A. Guedeau and M. Veyssie, Mol. Cryst. liq. Cryst. Lett. 4:107 (1987).Google Scholar
  87. 84.
    G. Sigaud, M.F. Achard, F. Hardouin, M. Mauzac, H. Richard and H. Gasparoux, Macromolecules 20:578 (1987).ADSCrossRefGoogle Scholar
  88. 85.
    G. Sigaud, M.F. Achard, F. Hardouin, C. Coulon, H. Richard and M. Mauzac, Macromolecules 24:565(1990).Google Scholar
  89. 86.
    F. Hardouin, G. Sigaud and M.F. Achard, in: “Liquid Crystalline and Mesomorphic Polymers”, L. Lam and V.P. Shibaev, Eds, Springer-Verlag, (1991).Google Scholar
  90. 87.
    F. Brochard, C.R. Hebd. Acad. Sci. 289B: 229 (1979).Google Scholar
  91. 88.
    F. Brochard, J. Jouffroy and P. Levinson, J. Phys. France 45: 1125 (1984).CrossRefGoogle Scholar
  92. 89.
    M.F. Achard, private communication.Google Scholar
  93. 90.
    W. H. de Jeu, L. Longa and D. Demus, J. Chem. Phys. 84: 6410, (1986).ADSCrossRefGoogle Scholar
  94. 91.
    M.F. Achard, G. Sigaud, P. Keller and F. Hardouin, Makromol. Chem. 189: 2159 (1988).CrossRefGoogle Scholar
  95. 92.
    V. Percec and R. Yourd, Macromolecules 22:3229 (1989).ADSCrossRefGoogle Scholar
  96. 93.
    J.A. Buglione, A. Roviello and A. Sirigu, Mol. Cryst. Liq. Cryst. 106:169 (1984).CrossRefGoogle Scholar
  97. 94.
    V. Krone and H. Ringsdorf, Liquid Crystals 2:411 (1987).CrossRefGoogle Scholar
  98. 95.
    J.W. Emsley, N.J. Heaton, G.R. Luckhurst and G.N. Shilstone, Mol. Phys. 64:377 (1988).ADSCrossRefGoogle Scholar
  99. 96.
    G.M. Janini, N.T. Tilfil and G.M. Muschik, Liquid Crystals 7:545 (1990).CrossRefGoogle Scholar
  100. 97.
    G. Ungar, J.L. Feijoo, A. Keller, R. Yourd and V. Percec, Macromolecules 23:3411 (1990).ADSCrossRefGoogle Scholar
  101. 98.
    V. Krone, H. Ringsdorf, M. Ebert, H. Hirschmann and J.H. Wendorff, Liquid Crystals 9:165 (1991).CrossRefGoogle Scholar
  102. 99.
    C. Viney, R.J. Twieg, C.M. Dannels and M.Y. Chang, Mol. Cryst. Liq. Cryst. Letters 7:147 (1990).Google Scholar
  103. 100.
    F.J. di Salvo, Science 247:649 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • G. Sigaud
    • 1
  1. 1.IBM Research DivisionAlmaden Research CentreSan JoseUSA

Personalised recommendations