The Layer and Director Structures of Ferroelectric Liquid Crystals

  • T. P. Rieker
  • N. A. Clark
Part of the NATO ASI Series book series (NSSB, volume 290)

Abstract

Liquid Crystals are a fascinating state of matter which have long been studied for their rich and diverse physical properties1,2. These materials have become of interest in a variety of applications, mainly due to their large optical anisotropy which is easily manipulated by applied fields and surface interactions. Twisted nematic (TN) devices have proved to be phenomenally useful and as a result, their response to applied fields and surface interactions is well understood.

Keywords

Surfactant Dust Graphite Torque Epoxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Patel and J.W. Goodby, J. Appl. Phys., 59 (7), (1986).CrossRefGoogle Scholar
  2. 2.
    P.G. de Gennes, The Physics of Liquid Crystals, Oxford University Press (1974).Google Scholar
  3. 3.
    N.A. Clark and S.T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    N.A. Clark and S.T. Lagerwall, Ferroelectrics 59, 25 (1984).CrossRefGoogle Scholar
  5. 5.
    T.P. Rieker, N.A. Clark, G.S. Smith, D.S. Parmar, E.B. Slrota and C.R. Safinya, Phys. Rev. Lett. 59, 2568 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    N.A Clark and T.P. Rieker, Phys Rev A 37, 1053 (1988).ADSGoogle Scholar
  7. 7.
    R.B. Meyer, ‘On the Smectic C Phase of Liquid Crystals’; Presentation at the 5th International Liquid Crystal Conference, Stockholm (1974).Google Scholar
  8. 8.
    M.A Handschy and N.A. Clark, Ferroelectrics 59, 69 (1984).CrossRefGoogle Scholar
  9. 9.
    Y. Ouchi, H. Takezoe and A. Fukuda, Jpn. J. Appl. Phys, Pt. 1 26, 1 (1987).CrossRefGoogle Scholar
  10. 10a.
    F. Roodelez, W. Urbacfa and H. Hervet, Phys. Rev. Lett, 41 (15), 1058–62, (1978);ADSCrossRefGoogle Scholar
  11. 10b.
    W. Urbach, H. Hervet and F. Rondeiez, Mol. Cryst. Liq. Oyst, 46 (34), 20921, (1978).Google Scholar
  12. 11.
    T.E. Lockhart, D.W. Allender, W. Gelerinter and D.L. Johnson, Phys. Rev. A 20, 1655 (1979).ADSGoogle Scholar
  13. 12a.
    C.R. Safinya, M. Kaplan, J. AlsNielsen, R.J. Birgenau, D. Davidov and J.D. Litster, Phys. Rev. B 21, 4149 (1980);ADSGoogle Scholar
  14. 12b.
    E.N. Keller, E. Nachaliel and D. Davidov, Phys. Rev. A 34, 4363 (1986).ADSGoogle Scholar
  15. 13.
    G. Pelzl, P. Kolbe, V. Preuksctias, S. Diele und D. Demos, Mol. Cryst. Liq. Cryst 53, 167 (1979).CrossRefGoogle Scholar
  16. 14.
    G. Fieidel, Ann. Phys. (Paris) 18, 277 (1922).Google Scholar
  17. 15.
    R.A. Clark, Phys. Rev. Lett. 55, 292 (1985).ADSCrossRefGoogle Scholar
  18. 16.
    J.M. Geary, J.W. Goodby, A.R. Kmetz and J.S. Patel, J. Appl. Phys. 62, 4100 (1987).ADSCrossRefGoogle Scholar
  19. 17.
    J.L. Janning, Appl. Phys. Lett. 21, 173 (1972).ADSCrossRefGoogle Scholar
  20. 18.
    W. Urbach, M. Boix and E. Guyon, Appl. Phys. Lett. 25, 479 (1974).ADSCrossRefGoogle Scholar
  21. 19.
    T. Uemura, N. Ohba, N. Wakita, H. Ohnishi, I. Ota, Japan Display, 464 (1986).Google Scholar
  22. 20.
    G. Hauck, Cryst.Res.Technol. 22, 817 (1987).CrossRefGoogle Scholar
  23. 21.
    W7-W82 is a 50:50 mixture of the compounds W7 and W82 obtained from Displaytech which exhibits the following phase sequence \(I\overset {60^\circ C} \longleftrightarrow {S_A}\overset {52^\circ C} \longleftrightarrow {S_C}\overset {22^\circ C} \longleftrightarrow X\). W7 is 4’-[(s)2methyl-3-oxa-l-pentyloxylphenyl 4-(decyloxy)benzoate (also known as C2C10). W82 is 4’-[(s)-l-hexyloxy-4-methyl.-phenyl 4-(decyloxy)benzoate (also known as 10.07*).Google Scholar
  24. 22.
    The phase sequence \(I\overset {118^\circ C} \longleftrightarrow {S_A}\overset {92^\circ C} \longleftrightarrow {S_C}\overset {60^\circ C} \longleftrightarrow S_I^*\overset {70^\circ C} \longleftrightarrow X\), DOBAMBC is decyloxybenzylidene-p’-amino- 2-methylbutylcinnanjate.Google Scholar
  25. 23.
    The phase sequence: \(I\overset {109^\circ C} \longleftrightarrow Ch\overset {61^\circ C} \longleftrightarrow {S_C}\overset { < - 20^\circ C} \longleftrightarrow S_I^*\) SCE-10 is a proprietary mixture, available from BDH.Google Scholar
  26. 24.
    The phase sequence \(I\overset {81^\circ C} \longleftrightarrow Ch\overset {69^\circ C} \longleftrightarrow {S_A}\overset {54^\circ C} \longleftrightarrow {S_C}\), Chisso CS-1014 is a proprietary mixture, available from Chisso.Google Scholar
  27. 25.
    The phase sequence: \(I\overset {86^\circ C} \longleftrightarrow Ch\overset {76^\circ C} \longleftrightarrow {S_A}\overset {62^\circ C} \longleftrightarrow {S_C}\) ZLI-3654 is a proprietary mixture, available from E. Merck.Google Scholar
  28. 26.
    The phase sequence: \(I\overset {136^\circ C} \longleftrightarrow Ch\overset {105^\circ C} \longleftrightarrow {S_A}\overset {74^\circ C} \longleftrightarrow {S_C}\) SCE-3 is a proprietary mixture, available from BDH.Google Scholar
  29. 27.
    D.S. Parmar (personal communications).Google Scholar
  30. 28.
    Y. Takanishi, Y. Ouchi, H. Takezoe and A. Fukuda, Jpn. J. Appl. Phys. Lett. 28, 3 (1989).CrossRefGoogle Scholar
  31. 29.
    P. Keller, P.E. Cladis, P.L. Finn and H.R. Brand, J. Physique 46, 2203 (1985).CrossRefGoogle Scholar
  32. 30.
    W. Helfrich and C.S. Oh, Mol. Cryst. Liq. Cryst., 14 (34), 28992.Google Scholar
  33. 31.
    C.E. Williams and M. Kleman, J. Physique Lett. 35, L33 (1974).CrossRefGoogle Scholar
  34. 32.
    8CB is 4’-cyano-4-n-octylbiphenyl.Google Scholar
  35. 33.
    N.V.S. Rao and V.G.K.M. Plslpatl, J. Phys. Chem. 87, 899902 (1983).CrossRefGoogle Scholar
  36. 34.
    HBB A is N-(p-n-hexyloxybenzylidene)-p-n-butylaniline.Google Scholar
  37. 35.
    Y. Ouchi, H. Takezoe and A. Fukuda, Jpn. J. Appl. Phys. Pt. 1 26, 1 (1987).CrossRefGoogle Scholar
  38. 36.
    M. Ocko, A.R. Kortan, R J. Birgenau and J.W. Goodby, J. Phys. (Paris) 45, 113 (1984).Google Scholar
  39. 37.
    N.A. Clark, T.P. Rieker and J.E. Maclennan, Ferroelectrics, 85, 79–97 (1988).CrossRefGoogle Scholar
  40. 38.
    J. Xue, N.A. Clark and M.R. Meadows, Appl. Phys. Lett. 53, 2397 (1988).ADSCrossRefGoogle Scholar
  41. 39.
    J.E. Maclennan ‘Switching Dynamics and Structures of Ferroelectric Liquid Crystals in the SurfaceStabilized Geometry.’ Ph.D. dissertation, University of Colorado, 1988.Google Scholar
  42. 40.
    J. Cognard, Mol. Cryst. Liq. Cryst., Suppl. Ser. 1, 1 (1982).Google Scholar
  43. 41.
    M.A. Handschy ‘Structures and Responses of Ferroelectric Liquid Crystals.’ Ph.D. dissertation, University of Colorado, 1983.Google Scholar
  44. 42.
    Y. Ouchi, H. Takazoe and A. Fukuda, Jpn. J. Appl. Phys. 26, 1 (1984).ADSCrossRefGoogle Scholar
  45. 43.
    M.A. Handschy and N.A. Clark, Appl Phys. Lett. 41, 39 (1982).ADSCrossRefGoogle Scholar
  46. 44.
    M. Kleman, Points, Lines and Walls (Wiley, New York, 1981).Google Scholar
  47. 45.
    H.A. van Sprang and R.G. Aartsen, J. Appl. Phys. 56, 251 (1984).ADSCrossRefGoogle Scholar
  48. 46.
    M.A. Handschy, N.A. Clark and S.T. Lagerwall, Phys. Rev. Lett., 51, 471 (1983)ADSCrossRefGoogle Scholar
  49. 47.
    Y. Yamada, T. Tsuge, N. Yamamoto, M. Yamawachi, H. Orinara and Y. Ishibashi, Ferroelectrics, 85, 123 (1988).CrossRefGoogle Scholar
  50. 48.
    G. Durand, Second International Topical Meeting on Optics of Liquid Crystals, Torino, 1988.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • T. P. Rieker
    • 1
  • N. A. Clark
    • 1
  1. 1.Condensed Matter Laboratory, Department of Physics and Optoelectronic Computing Systems CenterUniversity of ColoradoBoulderUSA

Personalised recommendations