Microscopic Aspects of the Nematic Phases

  • W. H. de Jeu
Part of the NATO ASI Series book series (NSSB, volume 290)


First a critical evaluation will be given of the structure and local order of molecules that typically give nematic behaviour. This allows the approximations made implicitly when real molecules are represented by simple rigid objects to be discussed. Microscopic order parameters will be defined starting from the orientational distribution function of the molecules. Connection will be made with macroscopic anisotropic properties that are often used to determine order parameters experimentally. In terms of intermolecular interactions the role of attractive forces and of excluded volume effects will be considered. The relevance of these molecular models will be discussed.


Nematic Liquid Crystal Nematic Phase Orientational Order Molecular Axis Exclude Volume Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Vertagen and W.H. de Jeu, Thermotropic Liquid Crystals, Fundamentals, Springer Series in Chemical Physics vol. 45 (Springer, Heidelberg, 1988).CrossRefGoogle Scholar
  2. 2.
    See, for example, J.W. Emsley (ed.), Nucelar Magnetic Resonance of Liquid Crystals, (Reidel, Dordrecht, 1985).Google Scholar
  3. 3.
    D. Frenkel, Chapter 5 of this Volume.Google Scholar
  4. 4.
    A.J. Leadbetter, Chap. 13 in The Molecular Physics of Liquid Crystals, G.R. Luckhurst and G.W. Gray, eds. (Academic Press, London, 1979).Google Scholar
  5. 5.
    M. Misawa and T. Fukunaga, J.Chem.Phys. 93, 3495 (1990), and references therein.ADSCrossRefGoogle Scholar
  6. 6.
    I.W. Hamley, R.W. Date, G.R. Luckhurst and I.M. Seddon, to be published.Google Scholar
  7. 7.
    J.W. Emsley, G.R. Luckhurst, G.W. Gray and A. Mosley, Mol.Phys. 35, 1499 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    K. Miyano, J.Chem.Phys. 69, 4807 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    L.G.P. Dalmolen, S.J. Picken, A.F. de Jong and W.H. de Jeu, J. Phys. 46, 1443 (1985).CrossRefGoogle Scholar
  10. 10.
    J.W. Emsley, G.R. Luckhurst and C.P. Stockley, Mol.Phys. 44, 1708 (1981).CrossRefGoogle Scholar
  11. 11.
    S.J. Picken, W.F. van Gunsteren, P.Th. van Duijnen and W.H. de Jeu, Liq.Cryst. 6, 357 (1989).CrossRefGoogle Scholar
  12. 12.
    A.J. Leadbetter and E.K. Norris, Mol.Phys. 38, 669 (1979).ADSCrossRefGoogle Scholar
  13. 13.
    R.M. Richardson, J.M. Allman and G.J. McIntyre, Liq.Cryst. 7, 701 (1990).CrossRefGoogle Scholar
  14. 14.
    W.M. Gelbart, J.Phys.Chem. 86, 4298 (1982), and references therein.CrossRefGoogle Scholar
  15. 15.
    See, for example, D. Demus, Mol.Cryst.Liq.Cryst. 165, 45 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • W. H. de Jeu
    • 1
    • 2
  1. 1.FOM-Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands
  2. 2.Open UniversityHeerlenThe Netherlands

Personalised recommendations