Advertisement

Three Dimensional Phase-Sensitive AC Voltametry: A New Experimental Approach for the Study of Phase Transitions

  • N. Papadopoulos
  • S. Sotiropoulos
  • P. Nikitas
Part of the NATO ASI Series book series (NSSB, volume 290)

Abstract

A new methodology, which we name Three Dimensional Phase-Sensitive AC Voltametry, is proposed for the study of phase transitions in lyotropic liquid crystals. In this technique, we monitor the capacitance changes during adsorption of surface active compounds on mercury, as a function of both applied potential and time. The application method is applied to the case of a submicellar electrolytic solution of sodium dodecyl sulphate. It is seen that by means of the variation of the reconstructed C-E curves in time, not only short-time diffusion controlled processes but also long-time changes can be followed. The latter measurement is very useful in cases where phase changes proceed slowly.

Keywords

Sodium Dodecyl Sulphate Sodium Dodecyl Sulphate Capacitance Curve Compact Layer Hanging Mercury Drop Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Nikitas, Electr.Act. 36: 447(1991).CrossRefGoogle Scholar
  2. 2.
    R. Sridharan and R. de Levie, J. Electroanal. Chem. 201: 133–143 (1986).CrossRefGoogle Scholar
  3. 3.
    R. Sridharan and R. de Levie, J. Electroanal. Chem. 201: 230 (1987).Google Scholar
  4. 4.
    L. Pospisil, J. Electroanal. Chem. 206: 269 (1986).CrossRefGoogle Scholar
  5. 5.
    T. Wandlowski and L. Pospisil, J. Electroanal. Chem. 258: 179 (1989).CrossRefGoogle Scholar
  6. 6.
    T. Wandlowski, J. Electroanal. Chem. 293: 219 (1990).CrossRefGoogle Scholar
  7. 7.
    L. Benedetti, M. Borsari, C. Fontanesi and E. Battistuzzi Gavioli, J. Chim. Phys. 87: 1597–1607 (1990).Google Scholar
  8. 8.
    N. Batina, Z. Kozarac and B. Cocovic, J. Electroanal. Chem. 188: 153 (1985).CrossRefGoogle Scholar
  9. 9a.
    Y. M. Temerk, M. M. Kamal, P. V. Valenta, Bioelectr. and Bionerg. 24: 165 (1990)CrossRefGoogle Scholar
  10. 9b.
    Y. M. Temerk, M. M. Kamal, P. V. Valenta, Bioelectr. and Bionerg. 24: 179 (1990).CrossRefGoogle Scholar
  11. 10a.
    K. Eda, J. Chem Soc. Jap. 80: 343 (1959)Google Scholar
  12. 10b.
    K. Eda, J. Chem Soc. Jap. 81: 689 (1960).Google Scholar
  13. 11.
    B. Damaskin, N. V. Nikolaeva Fedorovich and R. V. Ivanova, Russ. J. Phys. Chem. 34: 894 (1960).Google Scholar
  14. 12.
    D. Vollhardt, Colloid Polym. Scie. 254: 64 (1976).CrossRefGoogle Scholar
  15. 13a.
    D. Vollhardt, U. Modrow, V. Retter M. Jehring and J. Siegler, J. Electroanal. Chem. 125: 149 (1981)CrossRefGoogle Scholar
  16. 13b.
    D. Vollhardt, U. Modrow, V. Retter M. Jehring and J. Siegler, J. Electroanal. Chem. 125: 157 (1981).CrossRefGoogle Scholar
  17. 14.
    M. K. Kaisheva and V. K. Kaishev, Electrochimiya 22: 804 (1986).Google Scholar
  18. 15.
    P. Somasundaran and D. W. Fuerstenau, J. Phys. Chem 70: 90 (1966).CrossRefGoogle Scholar
  19. 16.
    J. Koryta, Collect. Czech. Chem Commun 18: 206 (1953).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • N. Papadopoulos
    • 1
  • S. Sotiropoulos
    • 1
  • P. Nikitas
    • 1
  1. 1.Laboratory of Physical Chemistry, Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations